Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(3): 035002, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604788

RESUMO

Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.

2.
Bot Stud ; 59(1): 5, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29404808

RESUMO

BACKGROUND: Temperature remarkably affects the growth and metabolism of plants. Tobacco is an important cash crop, and the long-term effects of different growth temperatures (18.5, 23.5 and 28.5 °C, daily average) on growth, development and plastid pigments metabolism of tobacco plants were investigated in this study. RESULTS: Compared with tobacco plants grown under 23.5 °C, treatments with 18.5 and 28.5 °C inhibited the expansion of leaves. The contents of superoxide anion (O 2·- ), hydrogen peroxide (H2O2) and malonaldehyde (MDA) in the leaves were significantly increased under 28.5 °C from 0 to 60 days, which in turn accelerated the flowering and senescence of tobacco plants. By contrast, the treatment with 18.5 °C remarkably decreased O 2.- , H2O2 and MDA, and delayed the flowering and senescence. Furthermore, treatment with 18.5 °C significantly up-regulated the expression of glutamyl-tRNA reductase (Glu-TR) and magnesium chelatase (MgCH), and down-regulated the ferri chelatase (FeCH), protochlorophyllide oxidoreductase, chlorophyllase (CHLase), phaeophorbide a monooxygenase (PaO) and phytoene synthase (PSY), which further promoted the accumulation of chlorophyll (Chls) and reduced the carotenoids (Cars) in leaves. On the contrary, exposing to 28.5 °C remarkably down-regulated the Glu-TR and MgCH, and up-regulated the FeCH, CHLase, PaO and PSY, which in turn decreased the Chls and increased the Cars in tobacco leaves. CONCLUSION: As compared with the plants grown under 23.5 °C, lower (18.5 °C) and higher (28.5 °C) growth temperature inhibited the growth of tobacco plants. In general, treatment with 28.5 °C accelerated the flowering and senescence of tobacco plants by enhancing the accumulation of O 2.- and H2O2 in leaves, while exposing to 18.5 °C had the opposite effects. Treatment with 18.5 °C increased the content of Chls and reduced the Cars in leaves. In contrast, Treatment with 28.5 °C decreased the Chls and increased the Cars. Moreover, both O 2.- and H2O2 took part in the breakdown of Chls in tobacco leaves to some extent. The results suggest that growth temperature could regulate growth, development, and plastid pigments metabolism, and 23.5 °C could be an optimal temperature for growth, development and metabolism of plastid pigments of tobacco plants under the experimental conditions.

3.
Rev Sci Instrum ; 83(11): 115002, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23206091

RESUMO

To obtain accurate results in dynamic measurements it is required that the sensors should have good dynamic performance. In practice, sensors have non-ideal dynamic characteristics due to their small damp ratios and low natural frequencies. In this case some dynamic error correction methods can be adopted for dealing with the sensor responses to eliminate the effect of their dynamic characteristics. The frequency-domain correction of sensor dynamic error is a common method. Using the existing calculation method, however, the correct frequency-domain correction function (FCF) cannot be obtained according to the step response calibration experimental data. This is because of the leakage error and invalid FCF value caused by the cycle extension of the finite length step input-output intercepting data. In order to solve these problems the data splicing preprocessing and FCF interpolation are put forward, and the FCF calculation steps as well as sensor dynamic error correction procedure by the calculated FCF are presented in this paper. The proposed solution is applied to the dynamic error correction of the bar-shaped wind tunnel strain gauge balance so as to verify its effectiveness. The dynamic error correction results show that the adjust time of the balance step response is shortened to 10 ms (shorter than 1/30 before correction) after frequency-domain correction, and the overshoot is fallen within 5% (less than 1/10 before correction) as well. The dynamic measurement accuracy of the balance is improved significantly.

4.
J Plant Physiol ; 166(15): 1694-9, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19446917

RESUMO

Exogenous H(2)O(2) treatment led to a significant accumulation of proline in coleoptiles and radicles of maize seedlings. It also induced an almost immediate and rapid increase of activity of the key enzymes Delta(1)-pyrroline-5-carboxylate synthetase and glutamate dehydrogenase of the glutamate pathway of proline biosynthesis and an up-regulation of Delta(1)-pyrroline-5-carboxylate synthetase gene expression. Activities of the key enzymes arginase and ornithine aminotransferase of the ornithine pathway of proline biosynthesis increased only after 12h of H(2)O(2) treatment. Furthermore, the H(2)O(2) treatment caused an early decrease of the activity of proline dehydrogenase, a key enzyme of proline degradation. These results indicate that H(2)O(2) might be involved in signal transduction events, leading to proline accumulation in maize seedlings, and that the H(2)O(2)-induced proline accumulation is a combined result of the sequential activation of the glutamate and ornithine pathways of proline biosynthesis and the simultaneous inhibition of proline degradation by H(2)O(2).


Assuntos
Peróxido de Hidrogênio/farmacologia , Prolina/metabolismo , Zea mays/efeitos dos fármacos , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato Desidrogenase/metabolismo , Ligases/metabolismo , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA