Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7949): 694-700, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755091

RESUMO

The ideal electrolyte for the widely used LiNi0.8Mn0.1Co0.1O2 (NMC811)||graphite lithium-ion batteries is expected to have the capability of supporting higher voltages (≥4.5 volts), fast charging (≤15 minutes), charging/discharging over a wide temperature range (±60 degrees Celsius) without lithium plating, and non-flammability1-4. No existing electrolyte simultaneously meets all these requirements and electrolyte design is hindered by the absence of an effective guiding principle that addresses the relationships between battery performance, solvation structure and solid-electrolyte-interphase chemistry5. Here we report and validate an electrolyte design strategy based on a group of soft solvents that strikes a balance between weak Li+-solvent interactions, sufficient salt dissociation and desired electrochemistry to fulfil all the aforementioned requirements. Remarkably, the 4.5-volt NMC811||graphite coin cells with areal capacities of more than 2.5 milliampere hours per square centimetre retain 75 per cent (54 per cent) of their room-temperature capacity when these cells are charged and discharged at -50 degrees Celsius (-60 degrees Celsius) at a C rate of 0.1C, and the NMC811||graphite pouch cells with lean electrolyte (2.5 grams per ampere hour) achieve stable cycling with an average Coulombic efficiency of more than 99.9 per cent at -30 degrees Celsius. The comprehensive analysis further reveals an impedance matching between the NMC811 cathode and the graphite anode owing to the formation of similar lithium-fluoride-rich interphases, thus effectively avoiding lithium plating at low temperatures. This electrolyte design principle can be extended to other alkali-metal-ion batteries operating under extreme conditions.

2.
J Am Chem Soc ; 146(17): 11711-11718, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632847

RESUMO

Lithium metal batteries (LMB) have high energy densities and are crucial for clean energy solutions. The characterization of the lithium metal interphase is fundamentally and practically important but technically challenging. Taking advantage of synchrotron X-ray, which has the unique capability of analyzing crystalline/amorphous phases quantitatively with statistical significance, we study the composition and dynamics of the LMB interphase for a newly developed important LMB electrolyte that is based on fluorinated ether. Pair distribution function analysis revealed the sequential roles of the anion and solvent in interphase formation during cycling. The relative ratio between Li2O and LiF first increases and then decreases during cycling, suggesting suppressed Li2O formation in both initial and long extended cycles. Theoretical studies revealed that in initial cycles, this is due to the energy barriers in many-electron transfer. In long extended cycles, the anion decomposition product Li2O encourages solvent decomposition by facilitating solvent adsorption on Li2O which is followed by concurrent depletion of both. This work highlights the important role of Li2O in transitioning from an anion-derived interphase to a solvent-derived one.

3.
Nat Mater ; 22(12): 1531-1539, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932334

RESUMO

Liquid electrolytes in batteries are typically treated as macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures, leaving a knowledge gap of the microstructural characteristics. Here, we reveal a unique micelle-like structure in a localized high-concentration electrolyte, in which the solvent acts as a surfactant between an insoluble salt in a diluent. The miscibility of the solvent with the diluent and simultaneous solubility of the salt results in a micelle-like structure with a smeared interface and an increased salt concentration at the centre of the salt-solvent clusters that extends the salt solubility. These intermingling miscibility effects have temperature dependencies, wherein a typical localized high-concentration electrolyte peaks in localized cluster salt concentration near room temperature and is used to form a stable solid-electrolyte interphase on a Li metal anode. These findings serve as a guide to predicting a stable ternary phase diagram and connecting the electrolyte microstructure with electrolyte formulation and formation protocols of solid-electrolyte interphases for enhanced battery cyclability.

4.
Cancer Cell Int ; 24(1): 20, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195567

RESUMO

BACKGROUND: Threonine and tyrosine kinase (TTK) is associated with invasion and metastasis in various tumors. However, the prognostic importance of TTK and its correlation with immune infiltration in endometrial cancer (EC) remain unclear. METHODS: The expression profile of TTK was analyzed using data from The Cancer Genome Atlas (TCGA) and the Clinical Proteome Cancer Analysis Consortium (CPTAC). TTK protein and mRNA levels were verified in EC cell lines. Receiver operating characteristic (ROC) curve analysis was used to evaluate the ability of TTK to distinguish between normal and EC tissues. K-M survival analysis was also conducted to evaluate the impact of TTK on survival outcomes. Protein‒protein interaction (PPI) networks associated with TTK were explored using the STRING database. Functional enrichment analysis was performed to elucidate the biological functions of TTK. TTK mRNA expression and immune infiltration correlations were examined using the Tumor Immune Estimation Resource (TIMER) and the Tumor-Immune System Interaction Database (TISIDB). RESULTS: TTK expression was significantly greater in EC tissues than in adjacent normal tissues. Higher TTK mRNA expression was associated with tumor metastasis and advanced TNM stage. The protein and mRNA expression of TTK was significantly greater in tumor cell lines than in normal endometrial cell lines. ROC curve analysis revealed high accuracy (94.862%), sensitivity (95.652%), and specificity (94.894%) of TTK in differentiating EC from normal tissues. K-M survival analysis demonstrated that patients with high TTK expression had worse overall survival (OS) and disease-free survival (DFS) rates. Correlation analysis revealed that TTK mRNA expression was correlated with B cells and neutrophils. CONCLUSION: TTK upregulation is significantly associated with poor survival outcomes and immune infiltration in patients with EC. TTK can serve as a potential biomarker for poor prognosis and a promising immunotherapy target in EC. Further investigation of the role of TTK in EC may provide valuable insights for therapeutic interventions and personalized treatment strategies.

5.
Environ Res ; 242: 117820, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048867

RESUMO

Engineered nanomaterials (ENMs) are inevitably released into the environment with the exponential application of nanotechnology. Parts of ENMs eventually accumulate in the soil environment leading to potential adverse effects on soil ecology, crop production, and human health. Therefore, the safety application of ENMs on soil has been widely discussed in recent years. More detailed safety information and potential soil environmental risks are urgently needed. However, most of the studies on the environmental effects of metal-based ENMs have been limited to single-species experiments, ecosystem processes, or abiotic processes. The present review formulated the source and the behaviors of the ENMs in soil, and the potential effects of single and co-exposure ENMs on soil microorganisms, soil fauna, and plants were introduced. The toxicity mechanism of ENMs to soil organisms was also reviewed including oxidative stress, the release of toxic metal ions, and physical contact. Soil properties affect the transport, transformation, and toxicity of ENMs. Toxic mechanisms of ENMs include oxidative stress, ion release, and physical contact. Joint toxic effects occur through adsorption, photodegradation, and loading. Besides, future research should focus on the toxic effects of ENMs at the food chain levels, the effects of ENMs on plant whole-lifecycle, and the co-exposure and long-term toxicity effects. A fast and accurate toxicity evaluation system and model method are urgently needed to solve the current difficulties. It is of great significance for the sustainable development of ENMs to provide the theoretical basis for the ecological risk assessment and environmental management of ENMs.


Assuntos
Ecossistema , Nanoestruturas , Humanos , Solo , Nanoestruturas/toxicidade , Nanotecnologia , Plantas
6.
Clin Nephrol ; 101(3): 109-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126195

RESUMO

BACKGROUND: Our study aims to investigate the immunological pathogenesis underlying immunoglobulin A nephropathy (IgAN) and explore potential biomarkers for IgAN diagnosis. MATERIALS AND METHODS: Differentially expressed genes (DEGs) of formalin-fixed and paraffin-embedded (FFPE) samples were screened between IgAN patients and healthy people based on GSE115857. Gene oncology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) enrichment was performed to identify related biological processes and pathways. CIBERSORT was utilized to seek the relationship of immune cell infiltration with IgAN. Finally, the expression of paraoxonase 2 (PON2) related to innate immune response was verified in FFPE samples of minimal change disease and IgAN patients by immunohistochemistry and PAS staining. RESULTS: 25 down-regulated genes and 12 up-regulated genes were identified in IgAN patients, which mainly responded to endothelial cell proliferation, inflammatory response, and angiogenesis. Toll-like receptor signaling pathway and Epstein-Barr virus (EBV) infection might be involved in IgAN pathogenesis. In addition, the infiltration of macrophages M0, naïve B cells, and follicular helper T (Tfh) cells was positively correlated in IgAN patients. Macrophages M1 and M2 infiltration were up-regulated in IgAN patients, which indicated that innate immune response was closely associated with IgAN. Besides, the results of immunohistochemistry showed that PON2 was obviously positively expressed in acute and chronic lesions of IgAN patients. CONCLUSION: In addition to abnormalities in the adaptive immune response, macrophages M1/M2 and innate immune disorder may participate in IgAN pathogenesis. PON2 may become the feasible targets for further investigation of IgAN.


Assuntos
Infecções por Vírus Epstein-Barr , Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/genética , Herpesvirus Humano 4 , Biologia Computacional , Expressão Gênica
7.
Ultrason Imaging ; 46(2): 110-120, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38140769

RESUMO

Henoch-Schönlein purpura nephritis (HSPN) is one of the most common kidney diseases in children. The current diagnosis and classification of HSPN depend on pathological biopsy, which is seriously limited by its invasive and high-risk nature. The aim of the study was to explore the potential of radiomics model for evaluating the histopathological classification of HSPN based on the ultrasound (US) images. A total of 440 patients with Henoch-Schönlein purpura nephritis proved by biopsy were analyzed retrospectively. They were grouped according to two histopathological categories: those without glomerular crescent formation (ISKDC grades I-II) and those with glomerular crescent formation (ISKDC grades III-V). The patients were randomly assigned to either a training cohort (n = 308) or a validation cohort (n = 132) with a ratio of 7:3. The sonologist manually drew the regions of interest (ROI) on the ultrasound images of the right kidney including the cortex and medulla. Then, the ultrasound radiomics features were extracted using the Pyradiomics package. The dimensions of radiomics features were reduced by Spearman correlation coefficients and least absolute shrinkage and selection operator (LASSO) method. Finally, three radiomics models using k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established, respectively. The predictive performance of such classifiers was assessed with receiver operating characteristic (ROC) curve. 105 radiomics features were extracted from derived US images of each patient and 14 features were ultimately selected for the machine learning analysis. Three machine learning models including k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established for HSPN classification. Of the three classifiers, the SVM classifier performed the best in the validation cohort [area under the curve (AUC) =0.870 (95% CI, 0.795-0.944), sensitivity = 0.706, specificity = 0.950]. The US-based radiomics had good predictive value for HSPN classification, which can be served as a noninvasive tool to evaluate the severity of renal pathology and crescentic formation in children with HSPN.


Assuntos
Glomerulonefrite , Vasculite por IgA , Criança , Humanos , Vasculite por IgA/complicações , Vasculite por IgA/diagnóstico por imagem , Estudos Retrospectivos , Radiômica , Glomerulonefrite/diagnóstico , Glomerulonefrite/patologia , Rim/diagnóstico por imagem , Rim/patologia
8.
Nano Lett ; 23(15): 7135-7142, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37462326

RESUMO

Spinel-structured ordered-LiNi0.5Mn1.5O4 (o-LNMO) has experienced a resurgence of interest in the context of reducing scarce elements such as cobalt from the lithium-ion batteries. O-LNMO undergoes two two-phase reactions at slow rates. However, it is not known if such phenomenon also applies at fast rates. Herein, we investigate the rate-dependent phase transition behavior of o-LNMO through in operando time-resolved X-ray diffraction. The results indicate that a narrow region of the solid solution reaction exists for charge and discharge at both slow and fast rates. The overall phase transition is highly asymmetric at fast rates. During fast charge, it is a particle-by-particle mechanism resulting from an asynchronized reaction among the particles. During fast discharge, it is likely a core-shell mechanism involving transition from Li0+xNi0.5Mn1.5O4 to Li1+xNi0.5Mn1.5O4 in the outer layer of particles. The Li0.5Ni0.5Mn1.5O4 phase is suppressed during fast discharge and appears only through Li redistribution upon relaxation.

9.
J Environ Manage ; 354: 120429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387344

RESUMO

During the COVID-19 pandemic, an abundance of plastic face masks has been consumed and disposed of in the environment. In addition, substantial amounts of plastic mulch film have been used in intensive agriculture with low recovery. Butyl benzyl phthalate (BBP) and TiO2 nanomaterials (nTiO2) are widely applied in plastic products, leading to the inevitable release of BBP and nTiO2 into the soil system. However, the impact of co-exposure of BBP and nTiO2 at low concentrations on earthworms remains understudied. In the present study, transcriptomics was applied to reveal the effects of individual BBP and nTiO2 exposures at a concentration of 1 mg kg-1, along with the combined exposure of BBP and nTiO2 (1 mg kg-1 BBP + 1 mg kg-1 nTiO2 (anatase)) on Metaphire guillelmi. The result showed that BBP and nTiO2 exposures have the potential to induce neurodegeneration through glutamate accumulation, tau protein, and oxidative stress in the endoplasmic reticulum and mitochondria, as well as metabolism dysfunction. The present study contributes to our understanding of the toxic mechanisms of emerging contaminants at environmentally relevant levels and prompts consideration of the management of BBP and nTiO2 within the soil ecosystems.


Assuntos
Nanoestruturas , Oligoquetos , Ácidos Ftálicos , Animais , Humanos , Oligoquetos/genética , Ecossistema , Pandemias , Titânio , Solo , Perfilação da Expressão Gênica
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 164-168, 2024 Feb 15.
Artigo em Zh | MEDLINE | ID: mdl-38436314

RESUMO

OBJECTIVES: To study the association of hypercoagulability with urinary protein and renal pathological damage in children with immunoglobulin A vasculitis with nephritis (IgAVN). METHODS: Based on the results of coagulation function, 349 children with IgAVN were divided into a hypercoagulability group consisting of 52 children and a non-hypercoagulability group consisting of 297 children. Urinary protein and renal pathological features were compared between the two groups, and the factors influencing the formation of hypercoagulability in children with IgAVN were analyzed. RESULTS: Compared with the non-hypercoagulability group, the hypercoagulability group had significantly higher levels of urinary erythrocyte count, 24-hour urinary protein, urinary protein/creatinine, urinary immunoglobulin G/creatinine, and urinary N-acetyl-ß-D-glucosaminidase (P<0.05). The hypercoagulability group also had a significantly higher proportion of children with a renal pathological grade of III-IV, diffuse mesangial proliferation, capillary endothelial cell proliferation, or >25% crescent formation (P<0.05). The multivariate logistic regression analysis showed that capillary endothelial cell proliferation and glomerular crescent formation >25% were associated with the formation of hypercoagulability in children with IgAVN (P<0.05). CONCLUSIONS: The renal injury in IgAVN children with hypercoagulability is more severe, with greater than 25% crescent formation and increased proliferation of glomerular endothelial cells being important contributing factors that exacerbate the hypercoagulable state in IgAVN.


Assuntos
Vasculite por IgA , Nefrite , Trombofilia , Criança , Humanos , Creatinina , Células Endoteliais , Rim , Vasculite por IgA/complicações , Trombofilia/etiologia , Imunoglobulina A
11.
Plant J ; 111(6): 1753-1767, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35883193

RESUMO

Phosphorus (P) is an important nutrient for plants. Here, we identify a WRKY transcription factor (TF) in poplar (Populus deltoides × Populus euramericana) (PdeWRKY65) that modulates tissue phosphate (Pi) concentrations in poplar. PdeWRKY65 overexpression (OE) transgenic lines showed reduced shoot Pi concentrations under both low and normal Pi availabilities, while PdeWRKY65 reduced expression (RE) lines showed the opposite phenotype. A gene encoding a Pi transporter (PHT), PdePHT1;9, was identified as the direct downstream target of PdeWRKY65 by RNA sequencing (RNA-Seq). The negative regulation of PdePHT1;9 expression by PdeWRKY65 was confirmed by DNA-protein interaction assays, including yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), co-expression of the promoters of PdePHT1;9 and PdeWRKY65 in tobacco (Nicotiana benthamiana) leaves, and chromatin immunoprecipitation-quantitative PCR. A second WRKY TF, PdeWRKY6, was subsequently identified and confirmed to positively regulate the expression of PdePHT1;9 by DNA-protein interaction assays. PdePHT1;9 and PdeWRKY6 OE and RE poplar transgenic lines were used to confirm their positive regulation of shoot Pi concentrations, under both normal and low Pi availabilities. No interaction between PdeWRKY6 and PdeWRKY65 was observed at the DNA or protein levels. Collectively, these data suggest that the low Pi-responsive TFs PdeWRKY6 and PdeWRKY65 independently regulate the expression of PHT1;9 to modulate tissue Pi concentrations in poplar.


Assuntos
Populus , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
J Am Chem Soc ; 145(2): 919-928, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36524698

RESUMO

Urinary monitoring of diseases has gained considerable attention due to its simple and non-invasive sampling. However, urinalysis remains limited by the dearth of reliable urinary biomarkers and the intrinsically enormous heterogeneity of urine samples. Herein, we report, to our knowledge, the first renal-clearable Raman probe encoded by an internal standard (IS)-conjugated reporter that acts as a quantifiable urinary biomarker for reliable monitoring of cancer development, simultaneously eliminating the impact of sample heterogeneity. Upon delivery of the probes into tumor microenvironments, the endogenously overexpressed ß-glucuronidase (GUSB) can cleave the target-responsive residues of the probes to produce IS-retained gold nanoclusters, which were excreted into host urine and analyzed by Au growth-based surface-enhanced Raman spectroscopy. As a result, the in vivo GUSB activity was transformed into in vitro quantitative urinary signals. Based on this IS-encoded synthetic biomarker, both the cancer progression and therapy efficacy were quantitatively monitored, potentiating clinical implications.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Biomarcadores/urina , Ouro/química , Rim , Nanopartículas Metálicas/química , Neoplasias/diagnóstico , Análise Espectral Raman/métodos , Microambiente Tumoral , Biomarcadores Tumorais/urina
13.
Small ; 19(17): e2207111, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599616

RESUMO

Chirality transfer is of vital importance that dominates the structure and functionality of biological systems and living matters. External physical stimulations, e.g. polarized light and mechanical forces, can trigger the chirality symmetry breaking, leading to the appearance of the enantiomeric entities created from a chiral self-assembly of achiral molecule. Here, several 2D assemblies with different chirality, synthesized on Au(111) surface by using achiral building blocks - glycylglycine (digly), the simplest polypeptide are reported. By delicately tuning the kinetic factors, i.e., one-step slow/rapid deposition, or stepwise slow deposition with mild annealing, achiral square hydrogen-bond organic frameworks (HOF), homochiral rhombic HOF and racemic rectangular assembly are achieved, respectively. Chirality induction and related symmetry broken in assemblies are introduced by the handedness (H-bond configurations in principle) of the assembled motifs and then amplified to the entire assemblies via the interaction between motifs. The results show that the chirality transfer and induction of biological assemblies can be tuned by altering the kinetic factors instead of applying external forces, which may offer an in-depth understanding and practical approach to peptide chiral assembly on the surfaces and can further facilitate the design of desired complex biomolecular superstructures.

14.
Arch Microbiol ; 205(4): 112, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36897473

RESUMO

Locusta migratoria is a serious agricultural pest in China. Beauveria bassiana is one of the most important pathogens of grasshoppers and locusts. The effects of ultraviolet light were evaluated on the B. bassiana strain BbZJ1. The results showed that 253.7 and 360 nm wavelength UV (Ultra Violet) did not affect the germination of B. bassiana after its recovery from UV treatments. Nevertheless, the virulence of B. bassiana BbZJ1 after its recovery from radiation of UV (253.7 nm) increased. The mortality rates were 85.00% for the BbZJ1 control, was 96.67% for BbZJ1 recovered from radiation of UV (253.7 nm) for 60 min. After treatment with 253.7 nm UV radiation for 60 min, the expression levels of stress-resistant genes BbAlg9 and Bbadh2 in BbZJ1 strain were 2.68 and 2.29 times higher than those in the control group, respectively. Meanwhile, the B. bassiana prepared in 5% groundnut oil showed highest tolerance levels to the ultraviolet radiation. The 5% groundnut oil was the most suitable potential UV-protectant for B. bassiana in terms of cost and availability.


Assuntos
Beauveria , Raios Ultravioleta , Virulência , Agricultura , China , Controle Biológico de Vetores/métodos
15.
Nanotechnology ; 35(7)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976543

RESUMO

The limited options of anabolic drugs restrict their application potential in osteoporosis treatment, despite their theoretical superiority in therapeutic efficacy over antiresorptive drugs. As a prevailing strategy, nano-delivery systems could offer a wider choice of anabolic drugs. In this study, calcium phosphate nanocomposites incorporated with simvastatin (Sim) with periostin-targeting ability were designed and prepared for osteoporosis treatment. Carboxymethyl dextran (CMD) as an anionic and hydrophilic dextran derivative was used to stabilize CaP. In addition, periosteum-targeted peptide (SDSSD) was further grafted on CMD to achieve the bone targeting function. In a one-step coordination assembly strategy, hydrophobic anabolic agent Sim and SDSSD-CMD graft (SDSSD-CMD) were incorporated into the CaP nanoparticles forming SDSSD@CaP/Sim nanocomposites. The resulting SDSSD@CaP/Sim possesses uniform size, great short-term stability and excellent biocompatibility. Moreover, SDSSD@CaP/Sim exhibited a reduced release rate of Sim and showed slow-release behaviour. As anticipated, the nanocomposites exhibited bone bonding capacity in both cellular and animal studies. Besides, SDSSD@CaP/Sim achieved obviously enhanced osteoporosis treatment effect compared to direct injection of Simin vivo. Therefore, our findings highlight the potential of SDSSD-incorporated and CaP-based nanocomposites as a viable strategy to enhance the therapeutic efficacy of anabolic drugs for osteoporosis treatment.


Assuntos
Nanocompostos , Osteoporose , Animais , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Osteoporose/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Fosfatos de Cálcio/química , Nanocompostos/uso terapêutico
16.
Thromb J ; 21(1): 9, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691024

RESUMO

BACKGROUND: Portal vein thrombosis is a common complication of liver cirrhosis and hepatocellular carcinoma; however, few studies have reported its long-term clinical prognosis. This study aimed to establish and validate easy-to-use nomograms for predicting gastrointestinal bleeding, portal vein thrombosis resolution, and mortality of patients with portal vein thrombosis. METHODS: This multicenter retrospective cohort study included 425 patients with portal vein thrombosis who were divided into training (n = 334) and validation (n = 91) sets. Prediction models were developed using multivariate Cox regression analysis and evaluated using the consistency index and calibration plots. RESULTS: Predictors of gastrointestinal bleeding included a history of gastrointestinal bleeding, superior mesenteric vein thrombosis, red color sign observed during endoscopy, and hepatic encephalopathy. Meanwhile, predictors of resolution of portal vein thrombosis included a history of abdominal infection, C-reactive protein and hemoglobin levels, and intake of thrombolytics. Predictors of death included abdominal infection, abdominal surgery, aspartate aminotransferase level, hepatic encephalopathy, and ascites. All models had good discriminatory power and consistency. Anticoagulation therapy significantly increased the probability of thrombotic resolution without increasing the risk of bleeding or death. CONCLUSIONS: We successfully developed and validated three prediction models that can aid in the early evaluation and treatment of portal vein thrombosis.

17.
Phys Chem Chem Phys ; 25(10): 7213-7222, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36846920

RESUMO

Selenium (Se) is an ideal doping agent to modulate the structure of carbon materials to improve their sodium storage performance but has been rarely investigated. In the present study, a novel Se-doped honeycomb-like macroporous carbon (Se-HMC) is prepared by a surface crosslinking method using diphenyl diselenide as the carbon source and SiO2 nanospheres as the template. Se-HMC has a high Se weight percentage above 10%, with a large surface area of 557 m2 g-1. Owing to the well-developed porous structure in combination with Se-assisted capacitive redox reactions, Se-HMC exhibits surface-dominated Na storage behaviors, thus presenting large capacity and fast Na storage capability. To be specific, Se-HMC delivers a high reversible capacity of 335 mA h g-1 at 0.1 A g-1, and after an 800-cycle repeated charge/discharge test at 1 A g-1, the capacity is stable with no dramatic loss. Remarkably, the capacity remains 251 mA h g-1 under a very large current density of 5 A g-1 (≈20 C), demonstrating an ultrafast Na storage process. As far as we know, such a good rate performance has been rarely achieved for carbon anodes before.

18.
BMC Pregnancy Childbirth ; 23(1): 829, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041018

RESUMO

BACKGROUND: The occurrence of orofacial Clefts (OFCs) is a congenital disease caused by many factors. According to recent studies, air pollution has a strong correlation with the occurrence of OFCs. However, there are still some controversies about the current research results, and there is no relevant research to review the latest results in recent years. OBJECTIVE: In this paper, the authors conducted a systematic review and meta-analysis to explore the correlation between ambient air pollution and the occurrence of neonatal OFCs deformity. METHODS: We searched Pubmed, Web of science, and Embase databases from the establishment of the database to May 2023. We included observational studies on the relationship between prenatal exposure to fine particulate matter 2.5 (PM2.5), fine particulate matter 10 (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO) and the risk of cleft lip (CL), cleft palate (CP), cleft lip with or without palate (CL/P). the Newcastle-Ottawa quality assessment scale (NOS) was used to evaluate the quality of the literature. Funnel plot and Egger's regression were used to verify the publication bias. Random effect model or fixed effect model was used to estimate the combined relative risk (RR) and 95% confidence interval (95%CI). RESULTS: A total of eleven studies were included in this study, including four cohort studies and seven case-control studies, including 22,453 cases of OFCs. Ten studies had low risk of bias and only one study had high risk of bias. Three studies reported that PM2.5 was positively correlated with CL and CP, with a combined RR and 95%CI of 1.287(1.174,1.411) and 1.267 (1.105,1.454). Two studies reported a positive correlation between O3 and CL, with a combined RR and 95%CI of 1.132(1.047,1.225). Two studies reported a positive correlation between PM10 and CL, with a combined RR and 95%CI of 1.108 (1.017,1.206). No association was found between SO2, CO, NO2 exposure during pregnancy and the risk of OFCs. CONCLUSION: The results of this study showed that there was a significant statistical correlation between exposure to PM10, PM2.5, O3 and the risk of OFCs in the second month of pregnancy. Exposure assessment, research methods and mechanisms need to be further explored.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Fenda Labial , Fissura Palatina , Ozônio , Recém-Nascido , Feminino , Gravidez , Humanos , Poluentes Atmosféricos/análise , Fenda Labial/epidemiologia , Fenda Labial/etiologia , Fissura Palatina/epidemiologia , Fissura Palatina/etiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/análise , Dióxido de Enxofre , Dióxido de Nitrogênio/efeitos adversos , Exposição Ambiental
19.
BMC Pediatr ; 23(1): 235, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173710

RESUMO

BACKGROUND: The study aims to investigate the clinical characteristics of early postnatal period in children with prenatal hydronephrosis (HN) in our single center for 8 years. STUDY DESIGN: The clinical data of 1137 children with prenatal HN from 2012 to 2020 were retrospectively analyzed in our center. Variables of our study mainly included different malformations and urinary tract dilation (UTD) classification, and main outcomes were recurrent hospitalization, urinary tract infection (UTI), jaundice, and surgery. RESULTS: Among the 1137 children with prenatal HN in our center, 188 cases (16.5%) were followed-up in early postnatal period, and 110 cases (58.5%) were found malformations. The incidence of recurrent hospitalization (29.8%) and UTI (72.5%) were higher in malformation, but the incidence of jaundice (46.2%) was higher in non-malformation(P < 0.001). Furthermore, UTI and jaundice were higher in vesicoureteral reflux (VUR) than those in uretero-pelvic junction obstruction (UPJO) (P < 0.05). Meanwhile, Children with UTD P2 and UTD P3 were prone to recurrent UTI, but UTD P0 was prone to jaundice (P < 0.001). In addition, 30 cases (16.0%) of surgery were all with malformations, and the surgical rates of UTD P2 and UTD P3 were higher than those of UTD P0 and UTD P1 (P < 0.001). Lastly, we concluded that the first follow-up should be less than 7 days, the first assessment should be 2 months, and the follow up should be at least once every 3 months. CONCLUSION: Children with prenatal HN have been found many malformations in early postnatal period, and with high-grade UTD were more prone to recurrent UTI, even to surgery. So, prenatal HN with malformations and high-grade UTD should be followed up in early postnatal period regularly.


Assuntos
Hidronefrose , Infecções Urinárias , Sistema Urinário , Criança , Gravidez , Feminino , Humanos , Lactente , Estudos Retrospectivos , Hidronefrose/complicações , Hidronefrose/diagnóstico por imagem , Infecções Urinárias/complicações , Infecções Urinárias/epidemiologia , Dilatação Patológica
20.
Proc Natl Acad Sci U S A ; 117(26): 14712-14720, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554498

RESUMO

Lithium sulfur batteries (LSBs) are promising next-generation rechargeable batteries due to the high gravimetric energy, low cost, abundance, nontoxicity, and high sustainability of sulfur. However, the dissolution of high-order polysulfide in electrolytes and low Coulombic efficiency of Li anode require excess electrolytes and Li metal, which significantly reduce the energy density of LSBs. Quasi-solid-state LSBs, where sulfur is encapsulated in the micropores of carbon matrix and sealed by solid electrolyte interphase, can operate under lean electrolyte conditions, but a low sulfur loading in carbon matrix (<40 wt %) and low sulfur unitization (<70%) still limit the energy density in a cell level. Here, we significantly increase the sulfur loading in carbon to 60 wt % and sulfur utilization to ∼87% by dispersing sulfur in an oxygen-rich dense carbon host at a molecular level through strong chemical interactions of C-S and O-S. In an all-fluorinated organic lean electrolyte, the C/S cathode experiences a solid-state lithiation/delithiation reaction after the formation of solid electrolyte interphase in the first deep lithiation, completely avoiding the shuttle reaction. The chemically stabilized C/S composite retains a high reversible capacity of 541 mAh⋅g-1 (based on the total weight of the C/S composite) for 200 cycles under lean electrolyte conditions, corresponding to a high energy density of 974 Wh⋅kg-1 The superior electrochemical performance of the chemical bonding-stabilized C/S composite renders it a promising cathode material for high-energy and long-cycle-life LSBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA