Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 146(20): 6156-6169, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34515271

RESUMO

The identification of the most competent embryos for transfer to the uterus constitutes the main challenge of in vitro fertilization (IVF). We established a metabolomic-based approach by applying Fourier transform infrared (FTIR) spectroscopy on 130 samples of 3-day embryo culture supernatants from 26 embryos that implanted and 104 embryos that failed. On examining the internal structure of the data by unsupervised multivariate analysis, we found that the supernatant spectra of nonimplanted embryos constituted a highly heterogeneous group. Whereas ∼40% of these supernatants were spectroscopically indistinguishable from those of successfully implanted embryos, ∼60% exhibited diverse, heterogeneous metabolic fingerprints. This observation proved to be the direct result of pregnancy's multifactorial nature, involving both intrinsic embryonic traits and external characteristics. Our data analysis strategy thus involved one-class modelling techniques employing soft independent modelling of class analogy that identified deviant fingerprints as unsuitable for implantation. From these findings, we could develop a noninvasive Fourier-transform-infrared-spectroscopy-based approach that represents a shift in the fundamental paradigm for data modelling applied in assisted-fertilization technologies.


Assuntos
Fertilização in vitro , Metabolômica , Meios de Cultura , Feminino , Humanos , Gravidez , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Mol Recognit ; 33(12): e2849, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32227521

RESUMO

The insurgence of newly arising, rapidly developing health threats, such as drug-resistant bacteria and cancers, is one of the most urgent public-health issues of modern times. This menace calls for the development of sensitive and reliable diagnostic tools to monitor the response of single cells to chemical or pharmaceutical stimuli. Recently, it has been demonstrated that all living organisms oscillate at a nanometric scale and that these oscillations stop as soon as the organisms die. These nanometric scale oscillations can be detected by depositing living cells onto a micro-fabricated cantilever and by monitoring its displacements with an atomic force microscope-based electronics. Such devices, named nanomotion sensors, have been employed to determine the resistance profiles of life-threatening bacteria within minutes, to evaluate, among others, the effect of chemicals on yeast, neurons, and cancer cells. The data obtained so far demonstrate the advantages of nanomotion sensing devices in rapidly characterizing microorganism susceptibility to pharmaceutical agents. Here, we review the key aspects of this technique, presenting its major applications. and detailing its working protocols.


Assuntos
Bactérias/ultraestrutura , Infecções Bacterianas/diagnóstico , Nanotecnologia/tendências , Bactérias/isolamento & purificação , Infecções Bacterianas/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Microscopia de Força Atômica/tendências , Movimento (Física)
3.
Small ; 14(4)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205867

RESUMO

Infectious diseases are caused by pathogenic microorganisms and are often severe. Time to fully characterize an infectious agent after sampling and to find the right antibiotic and dose are important factors in the overall success of a patient's treatment. Previous results suggest that a nanomotion detection method could be a convenient tool for reducing antibiotic sensitivity characterization time to several hours. Here, the application of the method for slow-growing bacteria is demonstrated, taking Bordetella pertussis strains as a model. A low-cost nanomotion device is able to characterize B. pertussis sensitivity against specific antibiotics within several hours, instead of days, as it is still the case with conventional growth-based techniques. It can discriminate between resistant and susceptible B. pertussis strains, based on the changes of the sensor's signal before and after the antibiotic addition. Furthermore, minimum inhibitory and bactericidal concentrations of clinically applied antibiotics are compared using both techniques and the suggested similarity is discussed.


Assuntos
Antibacterianos/farmacologia , Bordetella pertussis/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Humanos , Testes de Sensibilidade Microbiana
4.
Med Microbiol Immunol ; 207(1): 3-26, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29164393

RESUMO

Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.


Assuntos
Antígenos de Bactérias/imunologia , Bordetella pertussis/imunologia , Transmissão de Doença Infecciosa/prevenção & controle , Vacina contra Coqueluche/imunologia , Fatores de Virulência/imunologia , Coqueluche/prevenção & controle , Bordetella pertussis/patogenicidade , Descoberta de Drogas/tendências , Humanos , Vacina contra Coqueluche/isolamento & purificação , Coqueluche/epidemiologia
5.
Int J Syst Evol Microbiol ; 68(1): 14-20, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29095137

RESUMO

Bacteria from the Burkholderia cepacia complex (Bcc) are capable of causing severe infections in patients with cystic fibrosis (CF). These opportunistic pathogens are also widely distributed in natural and man-made environments. After a 12-year epidemiological surveillance involving Bcc bacteria from respiratory secretions of Argentinean patients with CF and from hospital settings, we found six isolates of the Bcc with a concatenated species-specific allele sequence that differed by more than 3 % from those of the Bcc with validly published names. According to the multilocus sequence analysis (MLSA), these isolates clustered with the agricultural soil strain, Burkholderia sp. PBP 78, which was already deposited in the PubMLST database. The isolates were examined using a polyphasic approach, which included 16S rRNA, recA, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), DNA base composition, average nucleotide identities (ANIs), fatty acid profiles, and biochemical characterizations. The results of the present study demonstrate that the seven isolates represent a single novel species within the Bcc, for which the name Burkholderia puraquae sp. nov. is proposed. Burkholderia puraquae sp. nov. CAMPA 1040T (=LMG 29660T=DSM 103137T) was designated the type strain of the novel species, which can be differentiated from other species of the Bcc mainly from recA gene sequence analysis, MLSA, ANIb, MALDI-TOF MS analysis, and some biochemical tests, including the ability to grow at 42 °C, aesculin hydrolysis, and lysine decarboxylase and ß-galactosidase activities.


Assuntos
Complexo Burkholderia cepacia/classificação , Fibrose Cística/microbiologia , Filogenia , Microbiologia do Solo , Agricultura , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Humanos , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Escarro
6.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28893915

RESUMO

Pertussis, or whooping cough, caused by the obligate human pathogen Bordetella pertussis is undergoing a worldwide resurgence. The majority of studies of this pathogen are conducted with laboratory-adapted strains which may not be representative of the species as a whole. Biofilm formation by B. pertussis plays an important role in pathogenesis. We conducted a side-by-side comparison of the biofilm-forming abilities of the prototype laboratory strains and the currently circulating isolates from two countries with different vaccination programs. Compared to the reference strain, all strains examined herein formed biofilms at high levels. Biofilm structural analyses revealed country-specific differences, with strains from the United States forming more structured biofilms. Bacterial hyperaggregation and reciprocal expression of biofilm-promoting and -inhibitory factors were observed in clinical isolates. An association of increased biofilm formation with augmented epithelial cell adhesion and higher levels of bacterial colonization in the mouse nose and trachea was detected. To our knowledge, this work links for the first time increased biofilm formation in bacteria with a colonization advantage in an animal model. We propose that the enhanced biofilm-forming capacity of currently circulating strains contributes to their persistence, transmission, and continued circulation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Bordetella pertussis/fisiologia , Coqueluche/microbiologia , Animais , Aderência Bacteriana , Bordetella pertussis/isolamento & purificação , Bordetella pertussis/patogenicidade , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Humanos , Camundongos , Nariz/microbiologia , Traqueia/microbiologia , Virulência
7.
Microbiology (Reading) ; 162(2): 351-363, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26673448

RESUMO

Bordetella bronchiseptica, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in Bordetella species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by B. bronchiseptica. We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of B. bronchiseptica under planktonic growth conditions. The ΔompQ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the ompQ gene attenuated the ability of B. bronchiseptica to form a mature biofilm. Analysis of ompQ gene expression during the biofilm formation process by B. bronchiseptica showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for B. bronchiseptica pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Biofilmes/crescimento & desenvolvimento , Bordetella bronchiseptica , Porinas/genética , Fatores de Virulência de Bordetella/genética , Proteínas de Bactérias/genética , Infecções por Bordetella/microbiologia , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/crescimento & desenvolvimento , Bordetella bronchiseptica/patogenicidade , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética
8.
Rev Argent Microbiol ; 48(1): 27-37, 2016.
Artigo em Espanhol | MEDLINE | ID: mdl-26895996

RESUMO

The epidemiological and clinical management of cystic fibrosis (CF) patients suffering from acute pulmonary exacerbations or chronic lung infections demands continuous updating of medical and microbiological processes associated with the constant evolution of pathogens during host colonization. In order to monitor the dynamics of these processes, it is essential to have expert systems capable of storing and subsequently extracting the information generated from different studies of the patients and microorganisms isolated from them. In this work we have designed and developed an on-line database based on an information system that allows to store, manage and visualize data from clinical studies and microbiological analysis of bacteria obtained from the respiratory tract of patients suffering from cystic fibrosis. The information system, named Cystic Fibrosis Cloud database is available on the http://servoy.infocomsa.com/cfc_database site and is composed of a main database and a web-based interface, which uses Servoy's product architecture based on Java technology. Although the CFC database system can be implemented as a local program for private use in CF centers, it can also be used, updated and shared by different users who can access the stored information in a systematic, practical and safe manner. The implementation of the CFC database could have a significant impact on the monitoring of respiratory infections, the prevention of exacerbations, the detection of emerging organisms, and the adequacy of control strategies for lung infections in CF patients.


Assuntos
Computação em Nuvem , Fibrose Cística , Bases de Dados Factuais , Fibrose Cística/complicações , Humanos , Infecções Respiratórias/etiologia
9.
Int J Med Microbiol ; 304(8): 1182-91, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25217078

RESUMO

The Burkholderia cepacia complex (Bcc) represents an important group of pathogens involved in long-term lung infection in cystic fibrosis (CF) patients. A positive selection of hypermutators, linked to antimicrobial resistance development, has been previously reported for Pseudomonas aeruginosa in this chronic infection setting. Hypermutability, however, has not yet been systematically evaluated in Bcc species. A total of 125 well characterized Bcc isolates recovered from 48 CF patients, 10 non-CF patients and 15 environmental samples were analyzed. In order to determine the prevalence of mutators their spontaneous mutation rates to rifampicin resistance were determined. In addition, the genetic basis of the mutator phenotypes was investigated by sequencing the mutS and mutL genes, the main components of the mismatch repair system (MRS). The overall prevalence of hypermutators in the collection analyzed was 13.6%, with highest occurrence (40.7%) among the chronically infected CF patients, belonging mainly to B. cenocepacia, B. multivorans, B. cepacia, and B. contaminans -the most frequently recovered Bcc species from CF patients worldwide. Thirteen (76.5%) of the hypermutators were defective in mutS and/or mutL. Finally, searching for a possible association between antimicrobial resistance and hypermutability, the resistance-profiles to 17 antimicrobial agents was evaluated. High antimicrobial resistance rates were documented for all the Bcc species recovered from CF patients, but, except for ciprofloxacin, a significant association with hypermutation was not detected. In conclusion, in the present study we demonstrate for the first time that, MRS-deficient Bcc species mutators are highly prevalent and positively selected in CF chronic lung infections. Hypermutation therefore, might be playing a key role in increasing bacterial adaptability to the CF-airway environment, facilitating the persistence of chronic lung infections.


Assuntos
Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia/genética , Fibrose Cística/complicações , Reparo de Erro de Pareamento de DNA , Taxa de Mutação , Infecções Respiratórias/microbiologia , Antibacterianos/farmacologia , Complexo Burkholderia cepacia/isolamento & purificação , Doença Crônica , Estudos de Coortes , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Microbiologia Ambiental , Humanos , Dados de Sequência Molecular , Rifampina/farmacologia , Análise de Sequência de DNA
10.
Front Bioeng Biotechnol ; 12: 1348106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515626

RESUMO

The World Health Organization highlights the urgent need to address the global threat posed by antibiotic-resistant bacteria. Efficient and rapid detection of bacterial response to antibiotics and their virulence state is crucial for the effective treatment of bacterial infections. However, current methods for investigating bacterial antibiotic response and metabolic state are time-consuming and lack accuracy. To address these limitations, we propose a novel method for classifying bacterial virulence based on statistical analysis of nanomotion recordings. We demonstrated the method by classifying living Bordetella pertussis bacteria in the virulent or avirulence phase, and dead bacteria, based on their cellular nanomotion signal. Our method offers significant advantages over current approaches, as it is faster and more accurate. Additionally, its versatility allows for the analysis of cellular nanomotion in various applications beyond bacterial virulence classification.

11.
J Clin Microbiol ; 51(1): 339-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23135937

RESUMO

A total of 120 Burkholderia cepacia complex isolates collected during 2004-2010 from 66 patients in two cystic fibrosis reference centers in Argentina were analyzed. Burkholderia contaminans was the species most frequently recovered (57.6%), followed by Burkholderia cenocepacia (15%), a species distribution not reported so far. The recA-PCR-based techniques applied to the B. contaminans isolates revealed that 85% of the population carried the recA-ST-71 allele. Our results showed the utility of BOX-PCR genotyping in analyzing B. contaminans diversity. This approach allowed us to address clonal transmission during an outbreak and the genetic changes occurring in infecting bacteria over the course of chronic infection.


Assuntos
Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia/genética , Complexo Burkholderia cepacia/isolamento & purificação , Fibrose Cística/complicações , Variação Genética , Argentina , Técnicas de Tipagem Bacteriana , Complexo Burkholderia cepacia/classificação , Genótipo , Humanos , Tipagem Molecular , Reação em Cadeia da Polimerase , Recombinases Rec A/genética
12.
Wound Repair Regen ; 20(4): 552-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22642376

RESUMO

Pathogenic bacteria delay wound healing through several different mechanisms such as persistent production of inflammatory mediators or maintenance of necrotic neutrophils, which release cytolytic enzymes and free oxygen radicals. One of the most frequent pathogens isolated from infections in chronic wounds is Pseudomonas aeruginosa. This bacterium is extremely refractory to therapy and to host immune attack when it forms biofilms. Therefore, antibiotics and antiseptics are becoming useless in the treatment of these infections. In previous works, we demonstrated that Lactobacillus plantarum has an important antipathogenic capacity on P. aeruginosa. The aim of the present work was to elucidate the mechanism involved in the control of growth of P. aeruginosa on different surfaces by L. plantarum. For this purpose, we investigated the effects of L. plantarum supernatants on pathogenic properties of P. aeruginosa, such as adhesion, viability, virulence factors, biofilm formation, and quorum sensing signal expression. L. plantarum supernatants were able to inhibit pathogenic properties of P. aeruginosa by a quorum quenching mechanism. The antipathogenic properties mentioned above, together with the immunomodulatory, tissue repair, and angiogenesis properties in the supernatants of L. plantarum, make them an attractive option in infected chronic wound treatment.


Assuntos
Inflamação/imunologia , Lactobacillus plantarum/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/patogenicidade , Cicatrização/imunologia , Infecção dos Ferimentos/imunologia , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte/farmacologia , Proteínas de Transporte/uso terapêutico , Doença Crônica , Humanos , Inflamação/patologia , Lipoproteínas/farmacologia , Lipoproteínas/uso terapêutico , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Percepção de Quorum , Espectroscopia de Infravermelho com Transformada de Fourier , Transativadores/farmacologia , Transativadores/uso terapêutico
13.
Rev Argent Microbiol ; 43(3): 168-75, 2011.
Artigo em Espanhol | MEDLINE | ID: mdl-22430988

RESUMO

Species belonging to the Burkholderia cepacia complex (BCC) are capable of causing chronic respiratory tract infections in patients suffering from cystic fibrosis as well as in immunocompromised individuals. Most of these species are highly resistant to antibiotic therapy, generating the need for their rapid and accurate detection for the proper treatment and clinical management of these patients. In this work, the polymerase chain reaction (PCR) technique based on the amplification of the recA gene (PCR-recA) was applied for an accurate identification of bacteria belonging to the BCC. Sensitivity (S) and specificity (E) of two biochemically-based commercial automated systems, API 20NE and VITEK 2 (bioMérieux®), and of the most representative biochemical manual tests for the identification of the Burkholderia cepacia complex were herein evaluated. The commercial systems VITEK 2 and API 20NE showed the following sensitivity and specificity vaues for identification to the species level, S: 71.1 %, E: 100 %, S: 69.7 %, E: 90.2 %, respectively. More complex results were observed for phenotypic manual tests, since BCC bacteria can undergo selective pressure to survive in chronic patients causing the loss of their typical phenotypic characteristics. The PCR-recA technique was easy to implement even in medium-complexity clinical diagnostic laboratories.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia/isolamento & purificação , Kit de Reagentes para Diagnóstico , Infecções Respiratórias/microbiologia , Automação , Proteínas de Bactérias/genética , Infecções por Burkholderia/diagnóstico , Infecções por Burkholderia/etiologia , Colorimetria/métodos , Fibrose Cística/complicações , DNA Bacteriano/genética , Suscetibilidade a Doenças , Genes Bacterianos , Genótipo , Humanos , Reação em Cadeia da Polimerase/métodos , Recombinases Rec A/genética , Padrões de Referência , Reprodutibilidade dos Testes , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/etiologia , Sensibilidade e Especificidade , Software
14.
Antibiotics (Basel) ; 10(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801939

RESUMO

Rapid antibiotic susceptibility testing (AST) could play a major role in fighting multidrug-resistant bacteria. Recently, it was discovered that all living organisms oscillate in the range of nanometers and that these oscillations, referred to as nanomotion, stop as soon the organism dies. This finding led to the development of rapid AST techniques based on the monitoring of these oscillations upon exposure to antibiotics. In this review, we explain the working principle of this novel technique, compare the method with current ASTs, explore its application and give some advice about its implementation. As an illustrative example, we present the application of the technique to the slowly growing and pathogenic Bordetella pertussis bacteria.

15.
Microorganisms ; 9(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34442624

RESUMO

Atomic force microscopy (AFM)-based nanomotion detection is a label-free technique that has been used to monitor the response of microorganisms to antibiotics in a time frame of minutes. The method consists of attaching living organisms onto an AFM cantilever and in monitoring its nanometric scale oscillations as a function of different physical-chemical stimuli. Up to now, we only used the cantilever oscillations variance signal to assess the viability of the attached organisms. In this contribution, we demonstrate that a more precise analysis of the motion pattern of the cantilever can unveil relevant medical information about bacterial phenotype. We used B. pertussis as the model organism, it is a slowly growing Gram-negative bacteria which is the agent of whooping cough. It was previously demonstrated that B. pertussis can expresses different phenotypes as a function of the physical-chemical properties of the environment. In this contribution, we highlight that B. pertussis generates a cantilever movement pattern that depends on its phenotype. More precisely, we noticed that nanometric scale oscillations of B. pertussis can be correlated with the virulence state of the bacteria. The results indicate a correlation between metabolic/virulent bacterial states and bacterial nanomotion pattern and paves the way to novel rapid and label-free pathogenic microorganism detection assays.

16.
Analyst ; 134(6): 1138-48, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19475140

RESUMO

Two approaches based on intact cell matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (IC-MALDI-ToF MS) have been evaluated in order to discriminate and identify nine former Burkholderia cepacia complex (Bcc) species, Burkholderia contaminans belonging to the novel Taxon K, Burkholderia gladioli, and the most relevant non-fermentative (NF) Gram-negative rods recovered from cystic fibrosis (CF) sputum cultures. In total, 146 clinical isolates and 26 reference strains were analysed. IC mass spectra were obtained with high reproducibility applying a recently developed inactivation protocol which is based on the extraction of microbial proteins by trifluoroacetic acid (TFA). In a first approach, spectral analysis was carried out by means of a gel-view representation of mass spectra, which turned out to be useful to recognize specific identifying biomarker proteins (SIBPs). A series of prominent mass peaks, mainly assigned to constitutively expressed proteins, were selected as SIBPs for identifications at the genus and species level. Two distinctive mass peaks present in B. contaminans spectra (7501 and 7900 Da) were proposed as SIBPs for the identification of this novel species. A second approach of spectral analysis based on data reduction, feature selection and subsequent hierarchical cluster analysis was used to obtain an objective discrimination of all species analysed. Both complementary modalities of analyzing complex IC-MALDI-ToF MS data open the path towards a rapid, accurate and objective means of routine clinical microbiology diagnosis of pathogens from sputum samples of CF patients.


Assuntos
Burkholderia cepacia/isolamento & purificação , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas de Bactérias/análise , Biomarcadores/análise , Burkholderia cepacia/classificação , Análise por Conglomerados , Fibrose Cística/metabolismo , Humanos , Laboratórios , Análise Multivariada , Reprodutibilidade dos Testes , Escarro/microbiologia , Fatores de Tempo
17.
Proteomics ; 8(23-24): 4995-5010, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18972542

RESUMO

Proteome analysis was combined with whole-cell metabolic fingerprinting to gain insight into the physiology of mature biofilm in Bordetella pertussis, the agent responsible for whooping cough. Recent reports indicate that B. pertussis adopts a sessile biofilm as a strategy to persistently colonize the human host. However, since research in the past mainly focused on the planktonic lifestyle of B. pertussis, knowledge on biofilm formation of this important human pathogen is still limited. Comparative studies were carried out by combining 2-DE and Fourier transform infrared (FT-IR) spectroscopy with multivariate statistical methods. These complementary approaches demonstrated that biofilm development has a distinctive impact on B. pertussis physiology. Results from MALDI-TOF/MS identification of proteins together with results from FT-IR spectroscopy revealed the biosynthesis of a putative acidic-type polysaccharide polymer as the most distinctive trait of B. pertussis life in a biofilm. Additionally, expression of proteins known to be involved in cellular regulatory circuits, cell attachment and virulence was altered in sessile cells, which strongly suggests a significant impact of biofilm development on B. pertussis pathogenesis. In summary, our work showed that the combination of proteomics and FT-IR spectroscopy with multivariate statistical analysis provides a powerful tool to gain further insight into bacterial lifestyles.


Assuntos
Biofilmes , Bordetella pertussis/fisiologia , Proteoma/análise , Proteômica/métodos , Azul Alciano , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Bordetella pertussis/citologia , Bordetella pertussis/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Cinética , Microesferas , Análise Multivariada , Plâncton/citologia , Plâncton/microbiologia , Polipropilenos , Análise de Componente Principal , Proteoma/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem , Frações Subcelulares/química
18.
J Clin Microbiol ; 46(8): 2535-46, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18550747

RESUMO

The accurate and rapid identification of bacteria isolated from the respiratory tract of patients with cystic fibrosis (CF) is critical in epidemiological studies, during intrahospital outbreaks, for patient treatment, and for determination of therapeutic options. While the most common organisms isolated from sputum samples are Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, in recent decades an increasing fraction of CF patients has been colonized by other nonfermenting (NF) gram-negative rods, such as Burkholderia cepacia complex (BCC) bacteria, Stenotrophomonas maltophilia, Ralstonia pickettii, Acinetobacter spp., and Achromobacter spp. In the present study, we developed a novel strategy for the rapid identification of NF rods based on Fourier transform infrared spectroscopy (FTIR) in combination with artificial neural networks (ANNs). A total of 15 reference strains and 169 clinical isolates of NF gram-negative bacteria recovered from sputum samples from 150 CF patients were used in this study. The clinical isolates were identified according to the guidelines for clinical microbiology practices for respiratory tract specimens from CF patients; and particularly, BCC bacteria were further identified by recA-based PCR followed by restriction fragment length polymorphism analysis with HaeIII, and their identities were confirmed by recA species-specific PCR. In addition, some strains belonging to genera different from BCC were identified by 16S rRNA gene sequencing. A standardized experimental protocol was established, and an FTIR spectral database containing more than 2,000 infrared spectra was created. The ANN identification system consisted of two hierarchical levels. The top-level network allowed the identification of P. aeruginosa, S. maltophilia, Achromobacter xylosoxidans, Acinetobacter spp., R. pickettii, and BCC bacteria with an identification success rate of 98.1%. The second-level network was developed to differentiate the four most clinically relevant species of BCC, B. cepacia, B. multivorans, B. cenocepacia, and B. stabilis (genomovars I to IV, respectively), with a correct identification rate of 93.8%. Our results demonstrate the high degree of reliability and strong potential of ANN-based FTIR spectrum analysis for the rapid identification of NF rods suitable for use in routine clinical microbiology laboratories.


Assuntos
Fibrose Cística/microbiologia , Bactérias Aeróbias Gram-Negativas/classificação , Bactérias Aeróbias Gram-Negativas/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Escarro/microbiologia , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Impressões Digitais de DNA , DNA Bacteriano/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Humanos , Redes Neurais de Computação , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA
19.
Bioorg Med Chem ; 16(7): 3878-86, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18291660

RESUMO

The interest in biological functions (benefits or toxics effects) of vanadium species has grown enormously in recent years. In this work, different spectroscopic methods were applied to study the effects of the interaction of vanadyl and vanadate species with bovine serum albumin (BSA), considered as the most abundant plasma protein. UV-Vis, Fourier transform infrared (FT-IR), and FT-Raman spectroscopies were used to investigate changes in secondary and tertiary structures of BSA induced by the binding of oxovanadium(IV) and vanadate(V) species (VO(2+) and VO3(-), respectively). Correlations between the metal ion binding mode, protein conformational transitions, and structural variations were established.


Assuntos
Soroalbumina Bovina/química , Vanádio/química , Animais , Bovinos , Dissulfetos/química , Ligação Proteica , Análise Espectral , Tirosina/química
20.
Front Microbiol ; 8: 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28167931

RESUMO

Aspirin has provided clear benefits to human health. But salicylic acid (SAL) -the main aspirin biometabolite- exerts several effects on eukaryote and prokaryote cells. SAL can affect, for instance, the expression of Staphylococcus aureus virulence factors. SAL can also form complexes with iron cations and it has been shown that different iron chelating molecules diminished the formation of S. aureus biofilm. The aim of this study was to elucidate whether the iron content limitation caused by SAL can modify the S. aureus metabolism and/or metabolic regulators thus changing the expression of the main polysaccharides involved in biofilm formation. The exposure of biofilm to 2 mM SAL induced a 27% reduction in the intracellular free Fe2+ concentration compared with the controls. In addition, SAL depleted 23% of the available free Fe2+ cation in culture media. These moderate iron-limited conditions promoted an intensification of biofilms formed by strain Newman and by S. aureus clinical isolates related to the USA300 and USA100 clones. The slight decrease in iron bioavailability generated by SAL was enough to induce the increase of PIA expression in biofilms formed by methicillin-resistant as well as methicillin-sensitive S. aureus strains. S. aureus did not produce capsular polysaccharide (CP) when it was forming biofilms under any of the experimental conditions tested. Furthermore, SAL diminished aconitase activity and stimulated the lactic fermentation pathway in bacteria forming biofilms. The polysaccharide composition of S. aureus biofilms was examined and FTIR spectroscopic analysis revealed a clear impact of SAL in a codY-dependent manner. Moreover, SAL negatively affected codY transcription in mature biofilms thus relieving the CodY repression of the ica operon. Treatment of mice with SAL induced a significant increase of S aureus colonization. It is suggested that the elevated PIA expression induced by SAL might be responsible for the high nasal colonization observed in mice. SAL-induced biofilms may contribute to S. aureus infection persistence in vegetarian individuals as well as in patients that frequently consume aspirin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA