Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833772

RESUMO

Monitoring regional terrestrial water load deformation is of great significance to the dynamic maintenance and hydrodynamic study of the regional benchmark framework. In view of the lack of a spatial interpolation method based on the GNSS (Global Navigation Satellite System) elevation time series for obtaining terrestrial water load deformation information, this paper proposes to employ a CORS (Continuously Operating Reference Stations) network combined with environmental loading data, such as ECMWF (European Centre for Medium-Range Weather Forecasts) atmospheric data, the GLDAS (Global Land Data Assimilation System) hydrological model, and MSLA (Mean Sea Level Anomaly) data. Based on the load deformation theory and spherical harmonic analysis method, we took 38 CORS stations in southeast Zhejiang province as an example and comprehensively determined the vertical deformation of the crust as caused by regional terrestrial water load changes from January 2015 to December 2017, and then compared these data with the GRACE (Gravity Recovery and Climate Experiment) satellite. The results show that the vertical deformation value of the terrestrial water load in southeast Zhejiang, as monitored by the CORS network, can reach a centimeter, and the amplitude changes from -1.8 cm to 2.4 cm. The seasonal change is obvious, and the spatial distribution takes a ladder form from inland to coastal regions. The surface vertical deformation caused by groundwater load changes in the east-west-south-north-central sub-regions show obvious fluctuations from 2015 to 2017, and the trends of the five sub-regions are consistent. The amplitude of surface vertical deformation caused by groundwater load change in the west is higher than that in the east. We tested the use of GRACE for the verification of CORS network monitoring results and found a relatively consistent temporal distribution between both data sets after phase delay correction on GRACE, except for in three months-November in 2015, and January and February in 2016. The results show that the comprehensive solution based on the CORS network can effectively improve the monitoring of crustal vertical deformation during regional terrestrial water load change.

2.
J Environ Manage ; 288: 112368, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33773209

RESUMO

A better knowledge of surface ozone variations and the relevant influential factors is of great significance for controlling frequent ozone pollution events. In this study, we first examined the primary variation patterns of surface ozone in space and time across China via a clustering analysis on the basis of daily maximum 8h average surface ozone (MDA8) between 2015 and 2018. Statistical models were then established between MDA8 and a set of influential factors to pinpoint dominant factors contributing to regional MDA8 variations. The clustering results revealed four typical variation patterns of MDA8 in China given distinct pollution levels, seasonality, and long-term trends. Statistical modeling results indicated that the seasonal variability of MDA8 was closely associated with UV radiation and meteorological factors like boundary layer height, temperature and relative humidity. In contrast, the long-term trends of MDA8 were largely linked to ozone precursors and meteorological variables including temperature, relative humidity, and total cloud cover. Moreover, the phenomenal increasing trends of MDA8 in North China were found to be statistically associated with the depletion of nitrogen dioxide (NO2) and carbon monoxide (CO). Specifically, substantial increases in volatile organic compounds (VOCs) along with depletions in NO2 and CO significantly boosted the photochemical ozone formation chain process in a VOC-limited regime like the North China plain. Overall, the inferred linkage in this study provides evidence and clues to help control increasing ozone pollution events in North China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Ozônio/análise
3.
Sci Rep ; 14(1): 16855, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039111

RESUMO

Accurate prediction of regional terrestrial water storage change (TWSA) is of great significance for water resources planning and management, and early warning of extreme climate disasters. Aiming at the problem that the conventional methods on prediction of TWSA time series are difficult to be accurate, the six typical regions are selected in China as examples, including the upper reaches of the Yangtze River (UYR), the southwest region (SWR), the Liaohe River Basin (LRB), the North China Plain (NCP), the Qinghai-Tibet Plateau (QTP), and the Pearl River Basin (PRB). The mascon product from GRACE/GRACE-FO provided by CSR is used to extract TWSA time series in six typical areas. The improved Back Propagation (BP) neural network, Long Short-Term Memory (LSTM) neural network and the latest Bidirectional LSTM (BiLSTM-attention) neural network model based on attention mechanism are proposed to predict and analyze the regional TWSA. In the experiment, the selection of the optimal model parameters such as the number of hidden layer nodes and the number of hidden units of the neural network model is tested and analyzed in detail. Meanwhile, the model prediction results are compared with the traditional least squares method and random forest (RF) prediction method. The root mean square error (RMSE), determination coefficient (R2), Nash-Sutcliffe efficiency coefficient (NSE) and mean absolute percentage error (MAPE) were used to evaluate the accuracy of the predicted results. The results show that the improved BP, LSTM and Bi-LSTM-attention neural network models all achieve higher prediction accuracy in UYR and SWR areas. RMSE is less than 2.641 cm, R2 is as high as 0.8 or more, NSE is above 0.6, and MAPE is within 0.1. Compared with the least square method, the RMSE of the predicted results from three neural network decreased by 0.998 cm, 0.700 cm and 0.7563 on average, and the R2 increased by 81.75%, 69.89% and 72% on average. Compared with RFML method, the RMSE from three neural network is reduced by 0.601 cm, 0.316 cm and 0.360, and R2 is increased by 38.20%, 24.60% and 27.06% on average. NSE and RMSE are improved to varying degrees in the above regions. It shows that the improved BP, LSTM and BiLSTM-attention model used can effectively predict TWSA. The research methods and results in this paper can provide important reference for the rational utilization of regional water resources and disaster risk assessment.

4.
Sci Rep ; 14(1): 5819, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461310

RESUMO

Monitoring and predicting the regional groundwater storage (GWS) fluctuation is an essential support for effectively managing water resources. Therefore, taking Shandong Province as an example, the data from Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) is used to invert GWS fluctuation from January 2003 to December 2022 together with Watergap Global Hydrological Model (WGHM), in-situ groundwater volume and level data. The spatio-temporal characteristics are decomposed using Independent Components Analysis (ICA), and the impact factors, such as precipitation and human activities, which are also analyzed. To predict the short-time changes of GWS, the Support Vector Machines (SVM) is adopted together with three commonly used methods Long Short-Term Memory (LSTM), Singular Spectrum Analysis (SSA), Auto-Regressive Moving Average Model (ARMA), as the comparison. The results show that: (1) The loss intensity of western GWS is significantly greater than those in coastal areas. From 2003 to 2006, GWS increased sharply; during 2007 to 2014, there exists a loss rate - 5.80 ± 2.28 mm/a of GWS; the linear trend of GWS change is - 5.39 ± 3.65 mm/a from 2015 to 2022, may be mainly due to the effect of South-to-North Water Diversion Project. The correlation coefficient between GRACE and WGHM is 0.67, which is consistent with in-situ groundwater volume and level. (2) The GWS has higher positive correlation with monthly Global Precipitation Climatology Project (GPCP) considering time delay after moving average, which has the similar energy spectrum depending on Continuous Wavelet Transform (CWT) method. In addition, the influencing facotrs on annual GWS fluctuation are analyzed, the correlation coefficient between GWS and in-situ data including the consumption of groundwater mining, farmland irrigation is 0.80, 0.71, respectively. (3) For the GWS prediction, SVM method is adopted to analyze, three training samples with 180, 204 and 228 months are established with the goodness-of-fit all higher than 0.97. The correlation coefficients are 0.56, 0.75, 0.68; RMSE is 5.26, 4.42, 5.65 mm; NSE is 0.28, 0.43, 0.36, respectively. The performance of SVM model is better than the other methods for the short-term prediction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA