Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 431, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693480

RESUMO

Ophthalmic manifestations have recently been observed in acute and post-acute complications of COVID-19 caused by SARS-CoV-2 infection. Our precious study has shown that host RNA editing is linked to RNA viral infection, yet ocular adenosine to inosine (A-to-I) RNA editing during SARS-CoV-2 infection remains uninvestigated in COVID-19. Herein we used an epitranscriptomic pipeline to analyze 37 samples and investigate A-to-I editing associated with SARS-CoV-2 infection, in five ocular tissue types including the conjunctiva, limbus, cornea, sclera, and retinal organoids. Our results revealed dramatically altered A-to-I RNA editing across the five ocular tissues. Notably, the transcriptome-wide average level of RNA editing was increased in the cornea but generally decreased in the other four ocular tissues. Functional enrichment analysis showed that differential RNA editing (DRE) was mainly in genes related to ubiquitin-dependent protein catabolic process, transcriptional regulation, and RNA splicing. In addition to tissue-specific RNA editing found in each tissue, common RNA editing was observed across different tissues, especially in the innate antiviral immune gene MAVS and the E3 ubiquitin-protein ligase MDM2. Analysis in retinal organoids further revealed highly dynamic RNA editing alterations over time during SARS-CoV-2 infection. Our study thus suggested the potential role played by RNA editing in ophthalmic manifestations of COVID-19, and highlighted its potential transcriptome impact, especially on innate immunity.


Assuntos
COVID-19 , Edição de RNA , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virologia , SARS-CoV-2/genética , Adenosina/metabolismo , Inosina/metabolismo , Inosina/genética , Transcriptoma , Olho/metabolismo , Olho/virologia
2.
BMC Med ; 22(1): 229, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853264

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive ages. Our previous study has implicated a possible link between RNA editing and PCOS, yet the actual role of RNA editing, its association with clinical features, and the underlying mechanisms remain unclear. METHODS: Ten RNA-Seq datasets containing 269 samples of multiple tissue types, including granulosa cells, T helper cells, placenta, oocyte, endometrial stromal cells, endometrium, and adipose tissues, were retrieved from public databases. Peripheral blood samples were collected from twelve PCOS and ten controls and subjected to RNA-Seq. Transcriptome-wide RNA-Seq data analysis was conducted to identify differential RNA editing (DRE) between PCOS and controls. The functional significance of DRE was evaluated by luciferase reporter assays and overexpression in human HEK293T cells. Dehydroepiandrosterone and lipopolysaccharide were used to stimulate human KGN granulosa cells to evaluate gene expression. RESULTS: RNA editing dysregulations across multiple tissues were found to be associated with PCOS in public datasets. Peripheral blood transcriptome analysis revealed 798 DRE events associated with PCOS. Through weighted gene co-expression network analysis, our results revealed a set of hub DRE events in PCOS blood. A DRE event in the eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2:chr2:37,100,559) was associated with PCOS clinical features such as luteinizing hormone (LH) and the ratio of LH over follicle-stimulating hormone. Luciferase assays, overexpression, and knockout of RNA editing enzyme adenosine deaminase RNA specific (ADAR) showed that the ADAR-mediated editing cis-regulated EIF2AK2 expression. EIAF2AK2 showed a higher expression after dehydroepiandrosterone and lipopolysaccharide stimulation, triggering changes in the downstrean MAPK pathway. CONCLUSIONS: Our study presented the first evidence of cross-tissue RNA editing dysregulation in PCOS and its clinical associations. The dysregulation of RNA editing mediated by ADAR and the disrupted target EIF2AK2 may contribute to PCOS development via the MPAK pathway, underlining such epigenetic mechanisms in the disease.


Assuntos
Síndrome do Ovário Policístico , Edição de RNA , eIF-2 Quinase , Humanos , Síndrome do Ovário Policístico/genética , Feminino , Edição de RNA/genética , eIF-2 Quinase/genética , Adulto , Células HEK293 , Perfilação da Expressão Gênica , Relevância Clínica
3.
Opt Express ; 28(13): 19325-19333, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672212

RESUMO

A systematic study of nonsequential double ionization (NSDI) of alkaline-earth metal atoms with mid-infrared femtosecond pulses is reported. We find that the measured NSDI yield shows a strong target dependence and it is more suppressed for alkaline-earth metal with higher ionization potential. The observation is attributed to the differences in the recollision induced excitation and ionization cross sections of alkaline-earth metals. This work indicates that NSDI of alkaline-earth metals can be generally understood within recollision picture and sheds light on ultrafast control of electron correlation and dynamics of ionic excited states during NSDI of atoms with complex structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA