Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Hum Evol ; 180: 103386, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209637

RESUMO

Morphological traits suggesting powerful jumping abilities are characteristic of early crown primate fossils. Because tree squirrels lack certain 'primatelike' grasping features but frequently travel on the narrow terminal branches of trees, they make a viable extant model for an early stage of primate evolution. Here, we explore biomechanical determinants of jumping performance in the arboreal Eastern gray squirrel (Sciurus carolinensis, n = 3) as a greater understanding of the biomechanical strategies that squirrels use to modulate jumping performance could inform theories of selection for increased jumping ability during early primate evolution. We assessed vertical jumping performance by using instrumented force platforms upon which were mounted launching supports of various sizes, allowing us to test the influence of substrate diameter on jumping kinetics and performance. We used standard ergometric methods to quantify jumping parameters (e.g., takeoff velocity, total displacement, peak mechanical power) from force platform data during push-off. We found that tree squirrels display divergent mechanical strategies according to the type of substrate, prioritizing force production on flat ground versus center of mass displacement on narrower poles. As jumping represents a significant part of the locomotor behavior of most primates, we suggest that jumping from small arboreal substrates may have acted as a potential driver of the selection for elongated hindlimb segments in primates, allowing the center of mass to be accelerated over a longer distance-and thereby reducing the need for high substrate reaction forces.


Assuntos
Primatas , Sciuridae , Animais , Fenômenos Biomecânicos , Locomoção
2.
J Hum Evol ; 161: 103077, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688978

RESUMO

An accurate prediction of the body mass of an extinct species can greatly inform the reconstruction of that species' ecology. Therefore, paleontologists frequently predict the body mass of extinct taxa from fossilized materials, particularly dental dimensions. Body mass prediction has traditionally been performed in a frequentist statistical framework, and accounting for phylogenetic relationships while calibrating prediction models has only recently become more commonplace. In this article, we apply BayesModelS-a phylogenetically informed Bayesian prediction method-to predict body mass in a sample of 49 euarchontan species (24 strepsirrhines, 20 platyrrhines, 3 tarsiids, 1 dermopteran, and 1 scandentian) and compare this approach's body mass prediction accuracy with other commonly used techniques, namely ordinary least squares, phylogenetic generalized least squares, and phylogenetic independent contrasts (PICs). When predicting the body masses of extant euarchontans from dental and postcranial variables, BayesModelS and PICs have substantially higher predictive accuracy than ordinary least squares and phylogenetic generalized least squares. The improved performances of BayesModelS and PIC are most evident for dentally derived body mass proxies or when body mass proxies have high degrees of phylogenetic covariance. Predicted values generated by BayesModelS and PIC methods also show less variance across body mass proxies when applied to the Eocene adapiform Notharctus tenebrosus. These more explicitly phylogenetically based methods should prove useful for predicting body mass in a paleontological context, and we provide executive scripts for both BayesModelS and PIC to increase ease of application.


Assuntos
Fósseis , Primatas , Animais , Teorema de Bayes , Filogenia
3.
Am J Phys Anthropol ; 175(4): 876-894, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33931869

RESUMO

OBJECTIVES: The competing functional demands of diarthrodial joints, permitting mobility while retaining enough stability to transmit forces across the joint, have been linked with the shape and size of the joint's articular surfaces. A clear understanding of the relationship between joint morphology and joint movement potential is important for reconstructing locomotor behaviors in fossil taxa. METHODS: In a sample of matched tali and calcanei of lorisids (n = 28) and cheirogaleids (n = 38), we quantify the surface areas of the talar and calcaneal ectal (=posterior talocalcaneal) articular surfaces and model the principal curvatures of these surfaces with quadric formulas. These two taxonomic groups have similar body masses, but differ substantially in positional behavior, so that differences in joint surface morphology should reflect adaptive demands of their locomotor behavior. RESULTS: Compared with cheirogaleids, lorisids exhibit: (a) a significantly greater area difference between their paired joint surfaces; and (b) a more pronounced saddle shape for the talar ectal facet. CONCLUSION: The increased subtalar joint mobility observed in lorisids may be achieved by increasing the amount of sliding and rolling that can occur at the subtalar joint. The subtalar joint morphology observed in two fossil euarchontans, the plesiadapiforms Purgatorius sp. and Plesiadapis cookei, compares favorably with the morphology observed among lorisids, potentially suggesting antipronograde postures within these extinct taxa.


Assuntos
Calcâneo , Articulação Talocalcânea , Tornozelo , Fósseis , Postura , Articulação Talocalcânea/anatomia & histologia
4.
Am J Primatol ; 82(2): e23088, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961002

RESUMO

A primate's body mass covaries with numerous ecological, physiological, and behavioral characteristics. This versatility and potential to provide insight into an animal's life has made body mass prediction a frequent and important objective in paleoanthropology. In hominin paleontology, the most commonly employed body mass prediction equations (BMPEs) are "mechanical" and "morphometric": uni- or multivariate linear regressions incorporating dimensions of load-bearing skeletal elements and stature and living bi-iliac breadth as predictor variables, respectively. The precision and accuracy of BMPEs are contingent on multiple factors, however, one of the most notable and pervasive potential sources of error is extrapolation beyond the limits of the reference sample. In this study, we use a test sample requiring extrapolation-56 bonobos (Pan paniscus) from the Lola ya Bonobo sanctuary in Kinshasa, Democratic Republic of the Congo-to evaluate the predictive accuracy of human-based morphometric BMPEs. We first assess systemic differences in stature and bi-iliac breadth between humans and bonobos. Due to significant differences in the scaling relationships of body mass and stature between bonobos and humans, we use panel regression to generate a novel BMPE based on living bi-iliac breadth. We then compare the predictive accuracy of two previously published morphometric equations with the novel equation and find that the novel equation predicts bonobo body mass most accurately overall (41 of 56 bonobos predicted within 20% of their observed body mass). The novel BMPE is particularly accurate between 25 and 45 kg. Given differences in limb proportions, pelvic morphology, and body tissue composition between the human reference and bonobo test samples, we find these results promising and evaluate the novel BMPE's potential application to fossil hominins.


Assuntos
Antropometria/métodos , Peso Corporal , Pan paniscus/fisiologia , Animais , República Democrática do Congo , Feminino , Hominidae , Masculino
5.
J Hum Evol ; 133: 23-31, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358182

RESUMO

Given that most species of primates are predominantly arboreal, maintaining the ability to move among branches of varying sizes has presumably been a common selective force in primate evolution. However, empirical evaluations of the relationships between morphological variation and characteristics of substrate geometry, such as substrate diameter relative to an animal's body mass, have been limited by the lack of quantified substrate usage in the wild. Here we use recently published quantitative data to assess the relationships between relative substrate size and talar morphology in nine New World monkey species at the Tiputini Biodiversity Station, Ecuador. Within this sample, both fibular facet angle (the angle between the fibular facet and the trochlear rims) and body-mass-standardized area of the medial tibial facet decrease as average and maximum relative substrate size increases. Correlations between medial tibial facet area and relative substrate size are driven by the inclusion of callitrichids in this sample. Nevertheless, these findings strengthen the hypothesis that variation in fibular facet orientation and medial tibial facet area are functionally correlated with habitual degrees of pedal inversion. They also strengthen the notion that evolutionarily changing body mass could impact habitat geometry experienced by a lineage and thereby substantially impact major trends in primate morphological evolution. This study highlights the importance of empirical data on substrate use in living primates for inferring functional and evolutionary implications of morphological variation.


Assuntos
Ecossistema , Platirrinos/anatomia & histologia , Platirrinos/fisiologia , Tálus/anatomia & histologia , Animais , Equador , Árvores
6.
Am J Phys Anthropol ; 170(1): 5-23, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228254

RESUMO

OBJECTIVES: The femoral remains recovered from the Lesedi Chamber are among the most complete South African fossil hominin femora discovered to date and offer new and valuable insights into the anatomy and variation of the bone in Homo naledi. While the femur is one of the best represented postcranial elements in the H. naledi assemblage from the Dinaledi Chamber, the fragmentary and commingled nature of the Dinaledi femoral remains has impeded the assessment of this element in its complete state. MATERIALS AND METHODS: Here we analyze and provide descriptions of three new relatively well-preserved femoral specimens of H. naledi from the Lesedi Chamber: U.W. 102a-001, U.W. 102a-003, and U.W. 102a-004. These femora are quantitatively and qualitatively compared to multiple extinct hominin femoral specimens, extant hominid taxa, and, where possible, each other. RESULTS: The Lesedi femora are morphologically similar to the Dinaledi femora for all overlapping regions, with differences limited to few traits of presently unknown significance. The Lesedi distal femur and mid-diaphysis preserve anatomy previously unidentified or unconfirmed in the species, including an anteroposteriorly expanded midshaft and anteriorly expanded patellar surface. The hypothesis that the Lesedi femoral sample may represent two individuals is supported. DISCUSSION: The Lesedi femora increase the range of variation of femoral morphology in H. naledi. Newly described features of the diaphysis and distal femur are either taxonomically uninformative or Homo-like. Overall, these three new femora are consistent with previous functional interpretations of the H. naledi lower limb as belonging to a species adapted for long distance walking and, possibly, running.


Assuntos
Fêmur , Fósseis , Hominidae , Animais , Antropologia Física , Evolução Biológica , Fêmur/anatomia & histologia , Fêmur/fisiologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Humanos , África do Sul , Caminhada/fisiologia
7.
J Hum Evol ; 115: 140-145, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28476280

RESUMO

Since body mass covaries with many ecological aspects of an animal, body mass prediction of fossil taxa is a frequent goal of paleontologists. Body mass prediction often relies on a body mass prediction equation (BMPE): a bivariate relationship between a predictor variable (e.g., molar occlusal area, femoral head breadth) and body mass as observed in extant taxa. A variety of metrics have been used to assess the reliability of BMPEs, including percentage prediction error (%PE), which involves predicting body masses of a test sample comprising individuals with associated masses. A mean %PE can be calculated in two ways: 1) as the mean %PE of multiple individual predictions (%MPE), or 2) as the %PE of mean body mass generated from the mean predictor value of multiple individuals (here termed %PEM). Differences between these two approaches have never been formally examined and no formal protocols have been recommended. Using a large sample of cercopithecoid primates (406 individuals from 50 species/subspecies) with associated body masses, body mass is predicted with six previously published interspecific BMPEs. Both %MPE and %PEM are calculated and compared. For all BMPEs, the distributions of differences between %MPE and %PEM exhibit positive skew and have medians significantly greater than zero, indicating that the examined prediction equations are more accurate at predicting mean body mass when they are applied to mean predictor values. The decreased predictive accuracy of %MPE relative to %PEM likely stems from changing the unit of analysis from mean values (in the reference sample) to individual values (in the test sample) when calculating %MPE. Empirical results are supported with a simulated dataset. Implications for body mass prediction in fossil species are discussed.


Assuntos
Antropologia Física/métodos , Peso Corporal , Catarrinos/fisiologia , Fósseis , Hominidae/fisiologia , Animais , Antropometria/métodos , Reprodutibilidade dos Testes
8.
J Hum Evol ; 115: 65-77, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28476281

RESUMO

Body mass is an ecologically and biomechanically important variable in the study of hominin biology. Regression equations derived from recent human samples allow for the reasonable prediction of body mass of later, more human-like, and generally larger hominins from hip joint dimensions, but potential differences in hip biomechanics across hominin taxa render their use questionable with some earlier taxa (i.e., Australopithecus spp.). Morphometric prediction equations using stature and bi-iliac breadth avoid this problem, but their applicability to early hominins, some of which differ in both size and proportions from modern adult humans, has not been demonstrated. Here we use mean stature, bi-iliac breadth, and body mass from a global sample of human juveniles ranging in age from 6 to 12 years (n = 530 age- and sex-specific group annual means from 33 countries/regions) to evaluate the accuracy of several published morphometric prediction equations when applied to small humans. Though the body proportions of modern human juveniles likely differ from those of small-bodied early hominins, human juveniles (like fossil hominins) often differ in size and proportions from adult human reference samples and, accordingly, serve as a useful model for assessing the robustness of morphometric prediction equations. Morphometric equations based on adults systematically underpredict body mass in the youngest age groups and moderately overpredict body mass in the older groups, which fall in the body size range of adult Australopithecus (∼26-46 kg). Differences in body proportions, notably the ratio of lower limb length to stature, influence predictive accuracy. Ontogenetic changes in these body proportions likely influence the shift in prediction error (from under- to overprediction). However, because morphometric equations are reasonably accurate when applied to this juvenile test sample, we argue these equations may be used to predict body mass in small-bodied hominins, despite the potential for some error induced by differing body proportions and/or extrapolation beyond the original reference sample range.


Assuntos
Antropologia Física/métodos , Peso Corporal , Hominidae/fisiologia , Animais , Criança , Feminino , Humanos , Masculino
9.
Am J Phys Anthropol ; 166(1): 179-195, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29369332

RESUMO

OBJECTIVES: Predicting body mass is a frequent objective of several anthropological subdisciplines, but there are few published methods for predicting body mass in immature humans. Because most reference samples are composed of adults, predicting body mass outside the range of adults requires extrapolation, which may reduce the accuracy of predictions. Prediction equations developed from a sample of immature humans would reduce extrapolation for application to small-bodied target individuals, and should have utility in multiple predictive contexts. MATERIALS AND METHODS: Here, we present two novel body mass prediction equations derived from 3468 observations of stature and bi-iliac breadth from a large sample of immature humans (n = 173) collected in the Harpenden Growth Study. Prediction equations were generated using raw and natural log-transformed data and modeled using panel regression, which accounts for serial autocorrelation of longitudinal observations. Predictive accuracy was gauged with a global sample of human juveniles (n = 530 age- and sex-specific annual means) and compared to the performance of the adult morphometric prediction equation previously identified as most accurate for human juveniles. RESULTS: While the raw data panel equation is only slightly more accurate than the adult equation, the logged data panel equation generates very accurate body mass predictions across both sexes and all age classes of the test sample (mean absolute percentage prediction error = 2.47). DISCUSSION: The logged data panel equation should prove useful in archaeological, forensic, and paleontological contexts when predictor variables can be measured with confidence and are outside the range of modern adult humans.


Assuntos
Antropometria/métodos , Peso Corporal/fisiologia , Modelos Estatísticos , Adolescente , Estatura , Índice de Massa Corporal , Criança , Pré-Escolar , Feminino , Humanos , Ílio/anatomia & histologia , Masculino
10.
J Hum Evol ; 108: 176-198, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28622929

RESUMO

Songhor is an early Miocene fossil locality in Kenya known for its diverse primate assemblage that includes catarrhine species belonging to the genera Kalepithecus, Limnopithecus, Dendropithecus, Rangwapithecus, and Proconsul. Expeditions to Songhor since the 1930s have recovered unassociated catarrhine postcranial remains from both the fore- and hindlimbs, including multiple elements from the feet. In this study, we describe KNM-SO 31233, a complete left hallucal metatarsal (Mt1), along with several other fragmentary Mt1 specimens (KNM-SO 1080, 5129, 5141, 22235). These fossils were compared to extant catarrhines and platyrrhines, as well as available fossil Miocene catarrhine Mt1s. Morphometric data were obtained from 3D surface renderings and subjected to a number of analyses to assess their phenetic affinity with the comparative sample, make predictions of body mass, and to infer their functional morphology. The size and shape of the Songhor Mt1s are diverse, exhibiting a large robust morph (KNM-SO 5141) similar in size but not in shape to extant African apes, medium-sized morphs (KNM-SO 1080, 5129 and 22235), and a smaller, slender one (KNM-SO 31233) that has a shape resembling arboreal quadrupedal leaping monkeys and suspensory atelines and hylobatids. KNM-SO 31233 is unlike other known fossil Mt1s, and in general, none of the Songhor Mt1s resembled any single extant anthropoid clade or species. The morpho-functional diversity of Songhor Mt1s is consistent with an extensive morphological and phylogenetic catarrhine diversity in the early part of the Miocene epoch.


Assuntos
Catarrinos/anatomia & histologia , Fósseis/anatomia & histologia , Ossos do Metatarso/anatomia & histologia , Animais , Hominidae/anatomia & histologia , Quênia , Filogenia
11.
Am J Phys Anthropol ; 163(2): 367-406, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28345775

RESUMO

OBJECTIVE: On the talus, the position and depth of the groove for the flexor hallucis longus tendon have been used to infer phylogenetic affinities and positional behaviors of fossil primates. This study quantifies aspects of the flexor hallucis longus groove (FHLG) to test if: (1) a lateral FHLG is a derived strepsirrhine feature, (2) a lateral FHLG reflects inverted and abducted foot postures, and (3) a deeper FHLG indicates a larger muscle. METHODS: We used linear measurements of microCT-generated models from a sample of euarchontans (n = 378 specimens, 125 species) to quantify FHLG position and depth. Data are analyzed with ANOVA, Ordinary and Phylogenetic Generalized Least Squares, and Bayesian Ancestral State Reconstruction (ASR). RESULTS: Extant strepsirrhines, adapiforms, plesiadapiforms, dermopterans, and Ptilocercus exhibit lateral FHLGs. Extant anthropoids, subfossil lemurs, and Tupaia have medial FHLGs. FHLGs of omomyiforms and basal fossil anthropoids are intermediate between those of strepsirrhines and extant anthropoids. FHLG position has few correlations with pedal inversion features. Relative FHLG depth is not significantly correlated with body mass. ASRs support a directional model for FHLG position and a random walk model for FHLG depth. CONCLUSIONS: The prevalence of lateral FHLGs in many non-euprimates suggests a lateral FHLG is not a derived strepsirrhine feature. The lack of correlations with pedal inversion features suggests a lateral FHLG is not a sufficient indicator of strepsirrhine-like foot postures. Instead, a lateral FHLG may reduce the risk of tendon displacement in abducted foot postures on large diameter supports. A deep FHLG does not indicate a larger muscle, but likely reduces bowstringing during plantarflexion.


Assuntos
Evolução Biológica , Fósseis , Primatas/anatomia & histologia , Tálus/anatomia & histologia , Animais , Feminino , Fíbula/anatomia & histologia , História Antiga , Humanos , Masculino , Filogenia , Primatas/classificação
12.
J Hum Evol ; 99: 52-78, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27650580

RESUMO

Well-preserved crania of notharctine adapiforms from the Eocene of North America provide the best direct evidence available for inferring neuroanatomy and encephalization in early euprimates (crown primates). Virtual endocasts of the notharctines Notharctus tenebrosus (n = 3) and Smilodectes gracilis (n = 4) from the middle Eocene Bridger formation of Wyoming, and the late Eocene European adapid adapiform Adapis parisiensis (n = 1), were reconstructed from high-resolution X-ray computed tomography (CT) data. While the three species share many neuroanatomical similarities differentiating them from plesiadapiforms (stem primates) and extant euprimates, our sample of N. tenebrosus displays more variation than that of S. gracilis, possibly related to differences in the patterns of cranial sexual dimorphism or within-lineage evolution. Body masses predicted from associated teeth suggest that N. tenebrosus was larger and had a lower encephalization quotient (EQ) than S. gracilis, despite their close relationship and similar inferred ecologies. Meanwhile, body masses predicted from cranial length of the same specimens suggest that the two species were more similar, with overlapping body mass and EQ, although S. gracilis exhibits a range of EQs shifted upwards relative to that of N. tenebrosus. While associated data from other parts of the skeleton are mostly lacking for specimens included in this study, measurements for unassociated postcrania attributed to these species yield body mass and EQ estimates that are also more similar to each other than those based on teeth. Regardless of the body mass prediction method used, results suggest that the average EQ of adapiforms was similar to that of plesiadapiforms, only overlapped the lower quadrant for the range of extant strepsirrhines, and did not overlap with the range of extant haplorhines. However, structural changes evident in these endocasts suggest that early euprimates relied more on vision than olfaction relative to plesiadapiforms, despite having relatively small endocranial volumes compared to extant taxa.


Assuntos
Primatas/anatomia & histologia , Primatas/classificação , Crânio/anatomia & histologia , Animais , Feminino , Fósseis , Masculino , Tomógrafos Computadorizados , Wyoming
13.
J Hum Evol ; 97: 123-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27457550

RESUMO

Primate species typically differ from other mammals in having bony canals that enclose the branches of the internal carotid artery (ICA) as they pass through the middle ear. The presence and relative size of these canals varies among major primate clades. As a result, differences in the anatomy of the canals for the promontorial and stapedial branches of the ICA have been cited as evidence of either haplorhine or strepsirrhine affinities among otherwise enigmatic early fossil euprimates. Here we use micro X-ray computed tomography to compile the largest quantitative dataset on ICA canal sizes. The data suggest greater variation of the ICA canals within some groups than has been previously appreciated. For example, Lepilemur and Avahi differ from most other lemuriforms in having a larger promontorial canal than stapedial canal. Furthermore, various lemurids are intraspecifically variable in relative canal size, with the promontorial canal being larger than the stapedial canal in some individuals but not others. In species where the promontorial artery supplies the brain with blood, the size of the promontorial canal is significantly correlated with endocranial volume (ECV). Among species with alternate routes of encephalic blood supply, the promontorial canal is highly reduced relative to ECV, and correlated with both ECV and cranium size. Ancestral state reconstructions incorporating data from fossils suggest that the last common ancestor of living primates had promontorial and stapedial canals that were similar to each other in size and large relative to ECV. We conclude that the plesiomorphic condition for crown primates is to have a patent promontorial artery supplying the brain and a patent stapedial artery for various non-encephalic structures. This inferred ancestral condition is exhibited by treeshrews and most early fossil euprimates, while extant primates exhibit reduction in one canal or another. The only early fossils deviating from this plesiomorphic condition are Adapis parisiensis with a reduced promontorial canal, and Rooneyia and Mahgarita with reduced stapedial canals.


Assuntos
Artéria Carótida Interna/anatomia & histologia , Orelha Média/anatomia & histologia , Fósseis/anatomia & histologia , Filogenia , Primatas/anatomia & histologia , Animais , Orelha Média/irrigação sanguínea , Orelha Média/diagnóstico por imagem , Primatas/classificação , Crânio/anatomia & histologia , Microtomografia por Raio-X
14.
Am J Phys Anthropol ; 157(3): 472-506, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25821153

RESUMO

OBJECTIVE: Multiple meaningful ecological characterizations of a species revolve around body mass. Because body mass cannot be directly measured in extinct taxa, reliable body mass predictors are needed. Many published body mass prediction equations rely on dental dimensions, but certain skeletal dimensions may have a more direct and consistent relationship with body mass. We seek to evaluate the reliability of prediction equations for inferring euarchontan body mass based on measurements of the articular facet areas of the astragalus and calcaneus. METHODS: Surface areas of five astragalar facets (n = 217 specimens) and two calcaneal facets (n = 163) were measured. Separate ordinary least squares and multiple regression equations are presented for different levels of taxonomic inclusivity, and the reliability of each equation is evaluated with the coefficient of determination, standard error of the estimate, mean prediction error, and the prediction sum of squares statistic. We compare prediction errors to published prediction equations that utilize dental and/or tarsal measures. Finally, we examine the effects of taxonomically specific regressions and apply our equations to a diverse set of non-primates. RESULTS: Our results reveal that predictions based on facet areas are more reliable than most linear dental or tarsal predictors. Multivariate approaches are often better than univariate methods, but require more information (making them less useful for fragmentary fossils). While some taxonomically specific regressions improve predictive ability, this is not true for all primate groups. CONCLUSIONS: Among individual facets, the ectal and fibular facets of the astragalus and the calcaneal cuboid facet are the best body mass predictors. Since these facets have primarily concave curvature and scale with positive allometry relative to body mass, it appears that candidate skeletal proxies for body mass can be identified based on their curvature and scaling coefficients.


Assuntos
Tamanho Corporal/fisiologia , Calcâneo/anatomia & histologia , Primatas/anatomia & histologia , Tálus/anatomia & histologia , Dente/anatomia & histologia , Animais , Antropologia Física , Feminino , Fósseis , Masculino
15.
Am J Phys Anthropol ; 157(1): 134-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25682740

RESUMO

OBJECTIVES: Comprehensive quantification of the shape and proportions of the medial tibial facet (MTF) of the talus (=astragalus) has been lacking for Primates and their closest relatives. In this study, aspects of MTF form were quantified and employed to test hypotheses about their functional and phylogenetic significance. The following hypotheses influence perceptions of primate evolutionary history but are due for more rigorous assessment: 1) A relatively large MTF distinguishes "prosimians" (strepsirrhines and tarsiers) from anthropoids and non-primate euarchontans; 2) the distinctive form of the "prosimian" MTF is a correlate of locomotor tendencies that emphasize use of vertical and small diameter supports in conjunction with inverted, abducted foot postures; and 3) the "prosimian" MTF form arose along the primate stem lineage and was present in the euprimate common ancestor. METHODS: Three-dimensional (3D) scanning was used to create scale digital models of tali (n = 378 specimens, 122 species) from which three types of variables capturing aspects of MTF form were computed: 1) MTF area relative to body mass and ectal facet area; 2) MTF shape (elliptical vs. non-elliptical); and 3) MTF dorsal restriction on the talar body (i.e., extensive vs. minimal exposure of non-articular area). Data were analyzed using both phylogenetic and traditional comparative methods including Phylogenetic Generalized Least Squares, Ordinary Least Squares, ANCOVA, ANOVA, and Bayesian Ancestral State Reconstruction (ASR). RESULTS: Extant "prosimians" are generally distinct from anthropoids and non-primate euarchontans in our quantitative representations of MTF form. MTF area (but not shape or dorsal restriction) correlates with fibular facet angle (FFa) of the talus, which has also been argued to reflect habitual pedal inversion. Among strepsirrhines, taxa that engage in grasp-leaping more frequently/effectively appear to have a relatively larger MTF than less acrobatic taxa. Directional models of evolutionary change better describe the phylogenetic distribution of MTF variation than do other models. ASR shows 1) little change in the MTF along the primate stem, 2) independent evolution of relatively large and dorsoplantarly deep MTFs in basal haplorhines and strepsirrhines, and 3) re-evolution of morphologies similar to non-euprimates in anthropoids. CONCLUSIONS: Results support the hypothesis that differences in MTF form between anthropoids and "prosimians" reflect greater use of inverted foot postures and grasp-leaping in the latter group. Although fossil "prosimians" do not have the extreme MTF dimensions that characterize many extant acrobatic leapers, these variables by themselves provide little additional behavioral resolution at the level of individual fossils due to strong phylogenetic signal. ASR suggests that some specialization for use of inverted foot postures (as required in a fine-branch niche) and modifications for grasp-leaping evolved independently in basal strepsirrhine and haplorhine lineages.


Assuntos
Evolução Biológica , Postura/fisiologia , Primatas , Tálus/anatomia & histologia , Análise de Variância , Animais , Antropologia Física , Filogenia , Primatas/anatomia & histologia , Primatas/classificação , Primatas/fisiologia
16.
J Anat ; 224(2): 150-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24219027

RESUMO

The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that 'true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except 'sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample size, clade inclusivity or behavioral diversity of the sample. Muscle mass scales with slight positive allometry to body mass, and PCSA scales at isometry to body mass. PCSA generally scales with negative allometry to articular surface area, which indicates joint surfaces increase faster than muscles' ability to generate force. We suggest a synthetic model to explain the complex patterns observed for talar articular surface area scaling: whether 'muscles or mass' drive articular facet scaling is probably dependent on the body size range of the sample and the biological role of the facet. The relationship between 'muscle vs. mass' dominance is likely bone- and facet-specific, meaning that some facets should respond primarily to stresses induced by larger body mass, whereas others primarily reflect muscle forces.


Assuntos
Primatas/genética , Tálus/anatomia & histologia , Tálus/citologia , Análise de Variância , Animais , Padronização Corporal/genética , Modelos Anatômicos , Linhagem , Filogenia , Radiografia , Propriedades de Superfície , Tálus/diagnóstico por imagem , Pesos e Medidas
17.
Am J Phys Anthropol ; 152 Suppl 57: 33-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24249591

RESUMO

Questions surrounding the origin and early evolution of primates continue to be the subject of debate. Though anatomy of the skull and inferred dietary shifts are often the focus, detailed studies of postcrania and inferred locomotor capabilities can also provide crucial data that advance understanding of transitions in early primate evolution. In particular, the hand skeleton includes characteristics thought to reflect foraging, locomotion, and posture. Here we review what is known about the early evolution of primate hands from a comparative perspective that incorporates data from the fossil record. Additionally, we provide new comparative data and documentation of skeletal morphology for Paleogene plesiadapiforms, notharctines, cercamoniines, adapines, and omomyiforms. Finally, we discuss implications of these data for understanding locomotor transitions during the origin and early evolutionary history of primates. Known plesiadapiform species cannot be differentiated from extant primates based on either intrinsic hand proportions or hand-to-body size proportions. Nonetheless, the presence of claws and a different metacarpophalangeal [corrected] joint form in plesiadapiforms indicate different grasping mechanics. Notharctines and cercamoniines have intrinsic hand proportions with extremely elongated proximal phalanges and digit rays relative to metacarpals, resembling tarsiers and galagos. But their hand-to-body size proportions are typical of many extant primates (unlike those of tarsiers, and possibly Teilhardina, which have extremely large hands). Non-adapine adapiforms and omomyids exhibit additional carpal features suggesting more limited dorsiflexion, greater ulnar deviation, and a more habitually divergent pollex than observed plesiadapiforms. Together, features differentiating adapiforms and omomyiforms from plesiadapiforms indicate increased reliance on vertical prehensile-clinging and grasp-leaping, possibly in combination with predatory behaviors in ancestral euprimates.


Assuntos
Evolução Biológica , Fósseis , Ossos da Mão , Mãos , Primatas , Animais , Mãos/anatomia & histologia , Mãos/fisiologia , Ossos da Mão/anatomia & histologia , Ossos da Mão/fisiologia , Locomoção/fisiologia , Primatas/anatomia & histologia , Primatas/fisiologia , Análise de Componente Principal
18.
PLoS One ; 14(11): e0219411, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770383

RESUMO

Scientific study of lemurs, a group of primates found only on Madagascar, is crucial for understanding primate evolution. Unfortunately, lemurs are among the most endangered animals in the world, so there is a strong impetus to maximize as much scientific data as possible from available physical specimens. MicroCT scanning efforts at Duke University have resulted in scans of more than 100 strepsirrhine cadavers representing 18 species from the Duke Lemur Center. An error study of the microCT scanner recovered less than 0.3% error at multiple resolution levels. Scans include specimen overviews and focused, high-resolution selections of complex anatomical regions (e.g., cranium, hands, feet). Scans have been uploaded to MorphoSource, an online digital repository for 3D data. As captive (but free ranging) individuals, these specimens have a wealth of associated information that is largely unavailable for wild populations, including detailed life history data. This digital collection maximizes the information obtained from rare and endangered animals with minimal degradation of the original specimens.


Assuntos
Espécies em Perigo de Extinção , Lemur/anatomia & histologia , Lemur/classificação , Strepsirhini/anatomia & histologia , Strepsirhini/classificação , Animais , Conservação dos Recursos Naturais , Bases de Dados Factuais , Galago/anatomia & histologia , Galago/classificação , Imageamento Tridimensional , Bibliotecas Digitais , Lorisidae/anatomia & histologia , Lorisidae/classificação , Madagáscar , North Carolina , Filogenia , Especificidade da Espécie , Universidades , Microtomografia por Raio-X
19.
Sci Rep ; 9(1): 12341, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451739

RESUMO

Adaptive scenarios of crown primate origins remain contentious due to uncertain order of acquisition and functional significance of the clade's diagnostic traits. A feature of the talus bone in the ankle, known as the posterior trochlear shelf (PTS), is well-regarded as a derived crown primate trait, but its adaptive significance has been obscured by poorly understood function. Here we propose a novel biomechanical function for the PTS and model the talus as a cam mechanism. By surveying a large sample of primates and their closest relatives, we demonstrate that the PTS is most strongly developed in extant taxa that habitually grasp vertical supports with strongly dorsiflexed feet. Tali of the earliest fossils likely to represent crown primates exhibit more strongly developed PTS cam mechanisms than extant primates. As a cam, the PTS may increase grasping efficiency in dorsiflexed foot postures by increasing the path length of the flexor fibularis tendon, and thus improve the muscle's ability to maintain flexed digits without increasing energetic demands. Comparisons are made to other passive digital flexion mechanisms suggested to exist in other vertebrates. These results provide robust anatomical evidence that the habitual vertical support use exerted a strong selective pressure during crown primate origins.


Assuntos
Evolução Biológica , Primatas/anatomia & histologia , Tálus/anatomia & histologia , Análise de Variância , Animais , Filogenia
20.
Anat Rec (Hoboken) ; 301(4): 636-658, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29024541

RESUMO

Automated geometric morphometric methods are promising tools for shape analysis in comparative biology, improving researchers' abilities to quantify variation extensively (by permitting more specimens to be analyzed) and intensively (by characterizing shapes with greater fidelity). Although use of these methods has increased, published automated methods have some notable limitations: pairwise correspondences are frequently inaccurate and pairwise mappings are not globally consistent (i.e., they lack transitivity across the full sample). Here, we reassess the accuracy of published automated methods-cPDist (Boyer et al. Proc Nat Acad Sci 108 () 18221-18226) and auto3Dgm (Boyer et al.: Anat Rec 298 () 249-276)-and evaluate several modifications to these methods. We show that a substantial percentage of alignments and pairwise maps between specimens of dissimilar geometries were inaccurate in the study of Boyer et al. (Proc Nat Acad Sci 108 () 18221-18226), despite a taxonomically partitioned variance structure of continuous Procrustes distances. We show these inaccuracies are remedied using a globally informed methodology within a collection of shapes, rather than relying on pairwise comparisons (c.f. Boyer et al.: Anat Rec 298 () 249-276). Unfortunately, while global information generally enhances maps between dissimilar objects, it can degrade the quality of correspondences between similar objects due to the accumulation of numerical error. We explore a number of approaches to mitigate this degradation, quantify their performance, and compare the generated pairwise maps (and the shape space characterized by these maps) to a "ground truth" obtained from landmarks manually collected by geometric morphometricians. Novel methods both improve the quality of the pairwise correspondences relative to cPDist and achieve a taxonomic distinctiveness comparable to auto3Dgm. Anat Rec, 301:636-658, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Imageamento Tridimensional/métodos , Animais , Conjuntos de Dados como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA