Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 607(7917): 119-127, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35576972

RESUMO

The recent emergence of SARS-CoV-2 Omicron (B.1.1.529 lineage) variants possessing numerous mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies and antiviral drugs for COVID-19 against these variants1,2. The original Omicron lineage, BA.1, prevailed in many countries, but more recently, BA.2 has become dominant in at least 68 countries3. Here we evaluated the replicative ability and pathogenicity of authentic infectious BA.2 isolates in immunocompetent and human ACE2-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone4, we observed similar infectivity and pathogenicity in mice and hamsters for BA.2 and BA.1, and less pathogenicity compared with early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from individuals who had recovered from COVID-19 and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987 plus REGN10933, COV2-2196 plus COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir and S-217622) can restrict viral infection in the respiratory organs of BA.2-infected hamsters. These findings suggest that the replication and pathogenicity of BA.2 is similar to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron BA.2 variants.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Cricetinae , Citidina/análogos & derivados , Combinação de Medicamentos , Hidroxilaminas , Indazóis , Lactamas , Leucina , Camundongos , Nitrilas , Prolina , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Triazinas , Triazóis
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34140350

RESUMO

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in viral infectivity. It is also the major antigen stimulating the host's protective immune response, specifically, the production of neutralizing antibodies. Recently, a new variant of SARS-CoV-2 possessing multiple mutations in the S protein, designated P.1, emerged in Brazil. Here, we characterized a P.1 variant isolated in Japan by using Syrian hamsters, a well-established small animal model for the study of SARS-CoV-2 disease (COVID-19). In hamsters, the variant showed replicative abilities and pathogenicity similar to those of early and contemporary strains (i.e., SARS-CoV-2 bearing aspartic acid [D] or glycine [G] at position 614 of the S protein). Sera and/or plasma from convalescent patients and BNT162b2 messenger RNA vaccinees showed comparable neutralization titers across the P.1 variant, S-614D, and S-614G strains. In contrast, the S-614D and S-614G strains were less well recognized than the P.1 variant by serum from a P.1-infected patient. Prior infection with S-614D or S-614G strains efficiently prevented the replication of the P.1 variant in the lower respiratory tract of hamsters upon reinfection. In addition, passive transfer of neutralizing antibodies to hamsters infected with the P.1 variant or the S-614G strain led to reduced virus replication in the lower respiratory tract. However, the effect was less pronounced against the P.1 variant than the S-614G strain. These findings suggest that the P.1 variant may be somewhat antigenically different from the early and contemporary strains of SARS-CoV-2.


Assuntos
COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Replicação Viral , Animais , Anticorpos Neutralizantes , COVID-19/diagnóstico por imagem , COVID-19/patologia , Cricetinae , Humanos , Imunogenicidade da Vacina , Pulmão/patologia , Mesocricetus , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Microtomografia por Raio-X
3.
Proc Natl Acad Sci U S A ; 117(28): 16587-16595, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32571934

RESUMO

At the end of 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) was detected in Wuhan, China, that spread rapidly around the world, with severe consequences for human health and the global economy. Here, we assessed the replicative ability and pathogenesis of SARS-CoV-2 isolates in Syrian hamsters. SARS-CoV-2 isolates replicated efficiently in the lungs of hamsters, causing severe pathological lung lesions following intranasal infection. In addition, microcomputed tomographic imaging revealed severe lung injury that shared characteristics with SARS-CoV-2-infected human lung, including severe, bilateral, peripherally distributed, multilobular ground glass opacity, and regions of lung consolidation. SARS-CoV-2-infected hamsters mounted neutralizing antibody responses and were protected against subsequent rechallenge with SARS-CoV-2. Moreover, passive transfer of convalescent serum to naïve hamsters efficiently suppressed the replication of the virus in the lungs even when the serum was administrated 2 d postinfection of the serum-treated hamsters. Collectively, these findings demonstrate that this Syrian hamster model will be useful for understanding SARS-CoV-2 pathogenesis and testing vaccines and antiviral drugs.


Assuntos
Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Pulmão/patologia , Pneumonia Viral/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/patogenicidade , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , Cricetinae , Humanos , Imunização Passiva , Pulmão/diagnóstico por imagem , Pulmão/virologia , Mesocricetus , Pandemias , Pneumonia Viral/patologia , Ribonucleoproteínas/química , SARS-CoV-2 , Células Vero , Proteínas Virais/química , Replicação Viral , Soroterapia para COVID-19
4.
Emerg Infect Dis ; 28(11): 2198-2205, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198306

RESUMO

Japan has reported a relatively small number of COVID-19 cases. Because not all infected persons receive diagnostic tests for COVID-19, the reported number must be lower than the actual number of infections. We assessed SARS-CoV-2 seroprevalence by analyzing >60,000 samples collected in Japan (Tokyo Metropolitan Area and Hokkaido Prefecture) during February 2020-March 2022. The results showed that ≈3.8% of the population had become seropositive by January 2021. The seroprevalence increased with the administration of vaccinations; however, among the elderly, seroprevalence was not as high as the vaccination rate. Among children, who were not eligible for vaccination, infection was spread during the epidemic waves caused by the SARS-CoV-2 Delta and Omicron variants. Nevertheless, seroprevalence for unvaccinated children <5 years of age was as low as 10% as of March 2022. Our study underscores the low incidence of SARS-CoV-2 infection in Japan and the effects of vaccination on immunity at the population level.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Japão/epidemiologia , Estudos Soroepidemiológicos , Anticorpos Antivirais , Vacinação
5.
Euro Surveill ; 24(6)2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30755292

RESUMO

BACKGROUND: Influenza A(H3N2) virus rapidly evolves to evade human immune responses, resulting in changes in the antigenicity of haemagglutinin (HA). Therefore, continuous genetic and antigenic analyses of A(H3N2) virus are necessary to detect antigenic mutants as quickly as possible. AIM: We attempted to phylogenetically and antigenically capture the epidemic trend of A(H3N2) virus infection in Yokohama, Japan during the 2016/17 and 2017/18 influenza seasons. METHODS: We determined the HA sequences of A(H3N2) viruses detected in Yokohama, Japan during the 2016/17 and 2017/18 influenza seasons to identify amino acid substitutions and the loss or gain of potential N-glycosylation sites in HA, both of which potentially affect the antigenicity of HA. We also examined the antigenicity of isolates using ferret antisera obtained from experimentally infected ferrets. RESULTS: Influenza A(H3N2) viruses belonging to six clades (clades 3C.2A1, 3C.2A1a, 3C.2A1b, 3C.2A2, 3C.2A3 and 3C.2A4) were detected during the 2016/17 influenza season, whereas viruses belonging to two clades (clades 3C.2A1b and 3C.2A2) dominated during the 2017/18 influenza season. The isolates in clades 3C.2A1a and 3C.2A3 lost one N-linked glycosylation site in HA relative to other clades. Antigenic analysis revealed antigenic differences among clades, especially clade 3C.2A2 and 3C.2A4 viruses, which showed distinct antigenic differences from each other and from other clades in the antigenic map. CONCLUSION: Multiple clades, some of which differed antigenically from others, co-circulated in Yokohama, Japan during the 2016/17 and 2017/18 influenza seasons.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/diagnóstico , RNA Viral/genética , Epidemias , Variação Genética , Hemaglutininas/genética , Humanos , Influenza Humana/epidemiologia , Japão/epidemiologia , Dados de Sequência Molecular , Filogenia , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano , Análise de Sequência de DNA
6.
Emerg Infect Dis ; 24(4): 746-750, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29553313

RESUMO

To clarify the threat posed by emergence of highly pathogenic influenza A(H7N9) virus infection among humans, we characterized the viral polymerase complex. Polymerase basic 2-482R, polymerase basic 2-588V, and polymerase acidic-497R individually or additively enhanced virus polymerase activity, indicating that multiple replication-enhancing mutations in 1 isolate may contribute to virulence.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/fisiologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Replicação Viral , Substituição de Aminoácidos , Animais , Genes Virais , Humanos , Camundongos , Mutação , Infecções por Orthomyxoviridae/virologia , Virulência/genética
7.
Vaccine ; 41(2): 590-597, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36517323

RESUMO

Mutations accumulate in influenza A virus proteins, especially in the main epitopes on the virus surface glycoprotein hemagglutinin (HA). For influenza A(H3N2) viruses, in particular, the antigenicity of their HA has altered since their emergence in 1968, requiring changes of vaccine strains every few years. Most adults have been exposed to several antigenically divergent H3N2 viruses through infection and/or vaccination, and those exposures affect the immune responses of those individuals. However, animal models reflecting this 'immune history' in humans are lacking and naïve animals are generally used for vaccination and virus challenge studies. Here, we describe a ferret model to mimic the serial exposure of humans to antigenically different historical H3HA proteins. In this model, ferrets were sequentially immunized with adjuvanted recombinant H3HA proteins from two or three different H3HA antigenic clusters in chronological order, and serum neutralizing antibody titers were examined against the homologous virus and viruses from different antigenic clusters. For ferrets immunized with a single HA antigen, serum neutralizing antibody titers were elevated specifically against the homologous virus. However, after immunization with the second or third antigenically distinct HA antigen in chronological order, the ferrets showed an increase in more broadly cross-reactive neutralizing titers against the antigenically distinct viruses and against the homologous virus. Sequentially immunized animals challenged with an antigenically advanced H3N2 virus showed attenuated virus growth and less body temperature increase compared with naïve animals. These results suggest that sequential exposure to antigenically different HAs elicits broader neutralizing activity in sera and enhances immune responses against more antigenically distinct viruses Our findings may partly explain why adults who have been exposed to antigenically divergent HAs are less likely to be infected with influenza virus and have severe symptoms than children.


Assuntos
Vacinas contra Influenza , Influenza Humana , Adulto , Criança , Humanos , Animais , Vírus da Influenza A Subtipo H3N2 , Furões , Anticorpos Antivirais , Hemaglutininas Virais , Proteínas Recombinantes , Anticorpos Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza
8.
One Health ; 17: 100588, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37359748

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to circulate in humans since its emergence in 2019. While infection in humans continues, numerous spillover events to at least 32 animal species, including companion and zoo animals, have been reported. Since dogs and cats are highly susceptible to SARS-CoV-2 and have direct contact with their owners and other household members, it is important to know the prevalence of SARS-CoV-2 in dogs and cats. Here, we established an ELISA to detect serum antibodies against the receptor-binding domain and the ectodomain of the SARS-CoV-2 spike and nucleocapsid proteins. Using this ELISA, we assessed seroprevalence in 488 dog serum samples and 355 cat serum samples that were collected during the early pandemic period (between May and June of 2020) and 312 dog serum samples and 251 cat serum samples that were collected during the mid-pandemic period (between October 2021 and January 2022). We found that two dog serum samples (0.41%) collected in 2020, one cat serum sample (0.28%) collected in 2020, and four cat serum samples (1.6%) collected in 2021 were positive for antibodies against SARS-CoV-2. No dog serum samples collected in 2021 were positive for these antibodies. We conclude that the seroprevalence of SARS-CoV-2 antibodies in dogs and cats in Japan is low, suggesting that these animals are not a major SARS-CoV-2 reservoir.

9.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36862518

RESUMO

The rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.1/BA.2/BA.2.75/BA.4/BA.5/BL.1/XBB). Furthermore, S728-1157 protected hamsters against in vivo challenges with WT, Delta, and BA.1 viruses. Structural analysis showed that this antibody targets a class 1/RBS-A epitope in the receptor binding domain via multiple hydrophobic and polar interactions with its heavy chain complementarity determining region 3 (CDR-H3), in addition to common motifs in CDR-H1/CDR-H2 of class 1/RBS-A antibodies. Importantly, this epitope was more readily accessible in the open and prefusion state, or in the hexaproline (6P)-stabilized spike constructs, as compared with diproline (2P) constructs. Overall, S728-1157 demonstrates broad therapeutic potential and may inform target-driven vaccine designs against future SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Anticorpos , Epitopos , Anticorpos Antivirais , Anticorpos Neutralizantes
10.
Nat Commun ; 13(1): 6602, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329075

RESUMO

Improved vaccines and antiviral agents that provide better, broader protection against seasonal and emerging influenza viruses are needed. The viral surface glycoprotein hemagglutinin (HA) is a primary target for the development of universal influenza vaccines and therapeutic antibodies. The other major surface antigen, neuraminidase (NA), has been less well studied as a potential target and fewer broadly reactive anti-NA antibodies have been identified. In this study, we isolate three human monoclonal antibodies that recognize NA from A/H1N1 subtypes, and find that one of them, clone DA03E17, binds to the NA of A/H3N2, A/H5N1, A/H7N9, B/Ancestral-lineage, B/Yamagata-lineage, and B/Victoria-lineage viruses. DA03E17 inhibits the neuraminidase activity by direct binding to the enzyme active site, and provides in vitro and in vivo protection against infection with several types of influenza virus. This clone could, therefore, be useful as a broadly protective therapeutic agent. Moreover, the neutralizing epitope of DA03E17 could be useful in the development of an NA-based universal influenza vaccine.


Assuntos
Herpesvirus Cercopitecino 1 , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Neuraminidase , Vírus da Influenza A Subtipo H3N2 , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais
11.
Microbiol Spectr ; 10(2): e0168921, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35254122

RESUMO

The role of the intestinal microbiota in coronavirus disease 2019 (COVID-19) is being elucidated. Here, we analyzed the temporal changes in microbiota composition and the correlation between inflammation biomarkers/cytokines and microbiota in hospitalized COVID-19 patients. We obtained stool specimens, blood samples, and patient records from 22 hospitalized COVID-19 patients and performed 16S rRNA metagenomic analysis of stool samples over the course of disease onset compared to 40 healthy individual stool samples. We analyzed the correlation between the changes in the gut microbiota and plasma proinflammatory cytokine levels. Immediately after admission, differences in the gut microbiota were observed between COVID-19 patients and healthy subjects, mainly including enrichment of the classes Bacilli and Coriobacteriia and decrease in abundance of the class Clostridia. The bacterial profile continued to change throughout the hospitalization, with a decrease in short-chain fatty acid-producing bacteria including Faecalibacterium and an increase in the facultatively anaerobic bacteria Escherichia-Shigella. A consistent increase in Eggerthella belonging to the class Coriobacteriia was observed. The abundance of the class Clostridia was inversely correlated with interferon-γ level and that of the phylum Actinobacteria, which was enriched in COVID-19, and was positively correlated with gp130/sIL-6Rb levels. Dysbiosis was continued even after 21 days from onset. The intestines tended to be an aerobic environment in hospitalized COVID-19 patients. Because the composition of the gut microbiota correlates with the levels of proinflammatory cytokines, this finding emphasizes the need to understand how pathology is related to the temporal changes in the specific gut microbiota observed in COVID-19 patients. IMPORTANCE There is growing evidence that the commensal microbiota of the gastrointestinal and respiratory tracts regulates local and systemic inflammation (gut-lung axis). COVID-19 is primarily a respiratory disease, but the involvement of microbiota changes in the pathogenesis of this disease remains unclear. The composition of the gut microbiota of patients with COVID-19 changed over time during hospitalization, and the intestines tended to be an aerobic environment in hospitalized COVID-19 patients. These changes in gut microbiota may induce increased intestinal permeability, called leaky gut, allowing bacteria and toxins to enter the circulatory system and further aggravate the systemic inflammatory response. Since gut microbiota composition correlates with levels of proinflammatory cytokines, this finding highlights the need to understand how pathology relates to the gut environment, including the temporal changes in specific gut microbiota observed in COVID-19 patients.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Bactérias/genética , Citocinas , Disbiose/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Hospitalização , Humanos , Inflamação , RNA Ribossômico 16S/genética
12.
Nat Microbiol ; 7(8): 1252-1258, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35705860

RESUMO

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the major antigen stimulating the host's protective immune response. Here we assessed the efficacy of therapeutic monoclonal antibodies (mAbs) against Omicron variant (B.1.1.529) sublineage BA.1 variants in Syrian hamsters. Of the FDA-approved therapeutic mAbs tested (that is, REGN10987/REGN10933, COV2-2196/COV2-2130 and S309), only COV2-2196/COV2-2130 efficiently inhibited BA.1 replication in the lungs of hamsters, and this effect was diminished against a BA.1.1 variant possessing the S-R346K substitution. In addition, treatment of BA.1-infected hamsters with molnupiravir (a SARS-CoV-2 RNA-dependent RNA polymerase inhibitor) or S-217622 (a SARS-CoV-2 protease inhibitor) strongly reduced virus replication in the lungs. These findings suggest that the use of therapeutic mAbs in Omicron-infected patients should be carefully considered due to mutations that affect efficacy, and demonstrate that the antiviral compounds molnupiravir and S-217622 are effective against Omicron BA.1 variants.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Antivirais/farmacologia , Antivirais/uso terapêutico , Cricetinae , Humanos , Mesocricetus , RNA Viral
13.
Intern Med ; 61(11): 1681-1686, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35342138

RESUMO

Objective Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Although the relationship between anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies and COVID-19 severity has been reported, information is lacking regarding the seropositivity of patients with particular types of diseases, including hematological diseases. Methods In this single-center, retrospective study, we compared SARS-CoV-2 IgG positivity between patients with hematological diseases and those with non-hematological diseases. Results In total, 77 adult COVID-19 patients were enrolled. Of these, 30 had hematological disorders, and 47 had non-hematological disorders. The IgG antibody against the receptor-binding domain of the spike protein was detected less frequently in patients with hematological diseases (60.0%) than in those with non-hematological diseases (91.5%; p=0.029). Rituximab use was significantly associated with seronegativity (p=0.010). Conclusion Patients with hematological diseases are less likely to develop anti-SARS-CoV-2 antibodies than those with non-hematological diseases, which may explain the poor outcomes of COVID-19 patients in this high-risk group.


Assuntos
COVID-19 , Doenças Hematológicas , Adulto , Anticorpos Antivirais , Doenças Hematológicas/complicações , Doenças Hematológicas/epidemiologia , Humanos , Imunoglobulina G , Imunoglobulina M , Japão/epidemiologia , Estudos Retrospectivos , SARS-CoV-2
14.
Res Sq ; 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35233565

RESUMO

The recent emergence of SARS-CoV-2 Omicron variants possessing large numbers of mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies, and antiviral drugs for COVID-19 against these variants1,2. While the original Omicron lineage, BA.1, has become dominant in many countries, BA.2 has been detected in at least 67 countries and has become dominant in the Philippines, India, and Denmark. Here, we evaluated the replicative ability and pathogenicity of an authentic infectious BA.2 isolate in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone3, we observed similar infectivity and pathogenicity in mice and hamsters between BA.2 and BA.1, and less pathogenicity compared to early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from COVID-19 convalescent individuals and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987/REGN10933, COV2-2196/COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir, and S-217622) can restrict viral infection in the respiratory organs of hamsters infected with BA.2. These findings suggest that the replication and pathogenicity of BA.2 is comparable to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron/BA.2 variants.

15.
Sci Adv ; 7(10)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33674317

RESUMO

Limited knowledge exists on immune markers associated with disease severity or recovery in patients with coronavirus disease 2019 (COVID-19). Here, we elucidated longitudinal evolution of SARS-CoV-2 antibody repertoire in patients with acute COVID-19. Differential kinetics was observed for immunoglobulin M (IgM)/IgG/IgA epitope diversity, antibody binding, and affinity maturation in "severe" versus "mild" COVID-19 patients. IgG profile demonstrated immunodominant antigenic sequences encompassing fusion peptide and receptor binding domain (RBD) in patients with mild COVID-19 who recovered early compared with "fatal" COVID-19 patients. In patients with severe COVID-19, high-titer IgA were observed, primarily against RBD, especially in patients who succumbed to SARS-CoV-2 infection. The patients with mild COVID-19 showed marked increase in antibody affinity maturation to prefusion SARS-CoV-2 spike that associated with faster recovery from COVID-19. This study revealed antibody markers associated with disease severity and resolution of clinical disease that could inform development and evaluation of effective immune-based countermeasures against COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Biomarcadores/sangue , COVID-19/imunologia , COVID-19/patologia , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Afinidade de Anticorpos/imunologia , Formação de Anticorpos/imunologia , COVID-19/sangue , COVID-19/virologia , Citocinas/sangue , Células HEK293 , Hospitalização , Humanos , Switching de Imunoglobulina , Cinética , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral
16.
Nat Commun ; 12(1): 6791, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815389

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is a receptor for cell entry of SARS-CoV-2, and recombinant soluble ACE2 protein inhibits SARS-CoV-2 infection as a decoy. ACE2 is a carboxypeptidase that degrades angiotensin II, thereby improving the pathologies of cardiovascular disease or acute lung injury. Here we show that B38-CAP, an ACE2-like enzyme, is protective against SARS-CoV-2-induced lung injury. Endogenous ACE2 expression is downregulated in the lungs of SARS-CoV-2-infected hamsters, leading to elevation of angiotensin II levels. Recombinant Spike also downregulates ACE2 expression and worsens the symptoms of acid-induced lung injury. B38-CAP does not neutralize cell entry of SARS-CoV-2. However, B38-CAP treatment improves the pathologies of Spike-augmented acid-induced lung injury. In SARS-CoV-2-infected hamsters or human ACE2 transgenic mice, B38-CAP significantly improves lung edema and pathologies of lung injury. These results provide the first in vivo evidence that increasing ACE2-like enzymatic activity is a potential therapeutic strategy to alleviate lung pathologies in COVID-19 patients.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Lesão Pulmonar/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Lesão Pulmonar Aguda , Angiotensina II , Animais , COVID-19/patologia , Carboxipeptidases , Chlorocebus aethiops , Cricetinae , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Edema Pulmonar/patologia , Edema Pulmonar/prevenção & controle , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Células Vero
17.
EClinicalMedicine ; 32: 100734, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33589882

RESUMO

BACKGROUND: To develop an effective vaccine against a novel viral pathogen, it is important to understand the longitudinal antibody responses against its first infection. Here we performed a longitudinal study of antibody responses against SARS-CoV-2 in symptomatic patients. METHODS: Sequential blood samples were collected from 39 individuals at various timepoints between 0 and 154 days after onset. IgG or IgM titers to the receptor binding domain (RBD) of the S protein, the ectodomain of the S protein, and the N protein were determined by using an ELISA. Neutralizing antibody titers were measured by using a plaque reduction assay. FINDINGS: The IgG titers to the RBD of the S protein, the ectodomain of the S protein, and the N protein peaked at about 20 days after onset, gradually decreased thereafter, and were maintained for several months after onset. Extrapolation modeling analysis suggested that the IgG antibodies were maintained for this amount of time because the rate of reduction slowed after 30 days post-onset. IgM titers to the RBD decreased rapidly and disappeared in some individuals after 90 days post-onset. All patients, except one, possessed neutralizing antibodies against authentic SARS-CoV-2, which they retained at 90 days after onset. The highest antibody titers in patients with severe infections were higher than those in patients with mild or moderate infections, but the decrease in antibody titer in the severe infection cohort was more remarkable than that in the mild or moderate infection cohort. INTERPRETATION: Although the number of patients is limited, our results show that the antibody response against the first SARS-CoV-2 infection in symptomatic patients is typical of that observed in an acute viral infection. FUNDING: The Japan Agency for Medical Research and Development and the National Institutes of Allergy and Infectious Diseases.

18.
Viruses ; 12(2)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013144

RESUMO

The A(H1N1)pdm09 virus emerged in 2009 and continues to circulate in human populations. Recent A(H1N1)pdm09 viruses, that is, A(H1N1)pdm09 viruses circulating in the post-pandemic era, can cause more or less severe infections than those caused by the initial pandemic viruses. To evaluate the changes in pathogenicity of the A(H1N1)pdm09 viruses during their continued circulation in humans, we compared the nucleotide and amino acid sequences of ten A(H1N1)pdm09 viruses isolated in Japan between 2009 and 2015, and experimentally infected mice with each virus. The severity of infection caused by these Japanese isolates ranged from milder to more severe than that caused by the prototypic pandemic strain A/California/04/2009 (CA04/09); however, specific mutations responsible for their pathogenicity have not yet been identified.


Assuntos
Sequência de Aminoácidos , Sequência de Bases , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Infecções por Orthomyxoviridae/virologia , Animais , Feminino , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Japão/epidemiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Pandemias , Filogenia , RNA Viral/genética , Índice de Gravidade de Doença , Virulência
19.
Viruses ; 12(12)2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322035

RESUMO

Reverse transcription-quantitative PCR (RT-qPCR)-based tests are widely used to diagnose coronavirus disease 2019 (COVID-19). As a result that these tests cannot be done in local clinics where RT-qPCR testing capability is lacking, rapid antigen tests (RATs) for COVID-19 based on lateral flow immunoassays are used for rapid diagnosis. However, their sensitivity compared with each other and with RT-qPCR and infectious virus isolation has not been examined. Here, we compared the sensitivity among four RATs by using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolates and several types of COVID-19 patient specimens and compared their sensitivity with that of RT-qPCR and infectious virus isolation. Although the RATs read the samples containing large amounts of virus as positive, even the most sensitive RAT read the samples containing small amounts of virus as negative. Moreover, all RATs tested failed to detect viral antigens in several specimens from which the virus was isolated. The current RATs will likely miss some COVID-19 patients who are shedding infectious SARS-CoV-2.


Assuntos
Antígenos Virais/análise , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/isolamento & purificação , Reações Falso-Negativas , Humanos , Imunoensaio , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Manejo de Espécimes
20.
Nat Microbiol ; 5(1): 27-33, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31768027

RESUMO

Here we report the isolation of the influenza A/H1N1 2009 pandemic (A/H1N1pdm) and A/H3N2 viruses carrying an I38T mutation in the polymerase acidic protein-a mutation that confers reduced susceptibility to baloxavir marboxil-from patients before and after treatment with baloxavir marboxil in Japan. These variants showed replicative abilities and pathogenicity that is similar to those of wild-type isolates in hamsters; they also transmitted efficiently between ferrets by respiratory droplets.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/patogenicidade , Influenza Humana/transmissão , Influenza Humana/virologia , Oxazinas/farmacologia , Piridinas/farmacologia , Tiepinas/farmacologia , Triazinas/farmacologia , Animais , Cricetinae , Dibenzotiepinas , Furões , Humanos , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/fisiologia , Japão , Camundongos , Morfolinas , Líquido da Lavagem Nasal/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Piridonas , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Virulência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA