Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610319

RESUMO

Object detection and tracking are pivotal tasks in machine learning, particularly within the domain of computer vision technologies. Despite significant advancements in object detection frameworks, challenges persist in real-world tracking scenarios, including object interactions, occlusions, and background interference. Many algorithms have been proposed to carry out such tasks; however, most struggle to perform well in the face of disturbances and uncertain environments. This research proposes a novel approach by integrating the You Only Look Once (YOLO) architecture for object detection with a robust filter for target tracking, addressing issues of disturbances and uncertainties. The YOLO architecture, known for its real-time object detection capabilities, is employed for initial object detection and centroid location. In combination with the detection framework, the sliding innovation filter, a novel robust filter, is implemented and postulated to improve tracking reliability in the face of disturbances. Specifically, the sliding innovation filter is implemented to enhance tracking performance by estimating the optimal centroid location in each frame and updating the object's trajectory. Target tracking traditionally relies on estimation theory techniques like the Kalman filter, and the sliding innovation filter is introduced as a robust alternative particularly suitable for scenarios where a priori information about system dynamics and noise is limited. Experimental simulations in a surveillance scenario demonstrate that the sliding innovation filter-based tracking approach outperforms existing Kalman-based methods, especially in the presence of disturbances. In all, this research contributes a practical and effective approach to object detection and tracking, addressing challenges in real-world, dynamic environments. The comparative analysis with traditional filters provides practical insights, laying the groundwork for future work aimed at advancing multi-object detection and tracking capabilities in diverse applications.

2.
Front Artif Intell ; 5: 927203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530359

RESUMO

The rapid spread of COVID-19 and its variants have devastated communities worldwide, and as the highly transmissible Omicron variant becomes the dominant strain of the virus in late 2021, the need to characterize and understand the difference between the new variant and its predecessors has been an increasing priority for public health authorities. Artificial Intelligence has played a significant role in the analysis of various facets of COVID-19 since the early stages of the pandemic. This study proposes the use of AI, specifically an XGBoost model, to quantify the impact of various medical risk factors (or "population features") on the possibility of a patient outcome resulting in hospitalization, ICU admission, or death. The results are compared between the Delta and Omicron COVID-19 variants. Results indicated that older age and an unvaccinated patient status most consistently correspond as the most significant population features contributing to all three scenarios (hospitalization, ICU, death). The top 15 features for each variant-outcome scenario were determined, which most frequently included diabetes, cardiovascular disease, chronic kidney disease, and complications of pneumonia as highly significant population features contributing to serious illness outcomes. The Delta/Hospitalization model returned the highest performance metric scores for the area under the receiver operating characteristic (AUROC), F1, and Recall, while Omicron/ICU and Omicron/Hospitalization had the highest accuracy and precision values, respectively. The recall was found to be above 0.60 in most cases (with only two exceptions), indicating that the total number of false positives was generally minimized (accounting for more of the people who would theoretically require medical care).

3.
Front Public Health ; 9: 675766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235131

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 pandemic has challenged medical systems to the brink of collapse around the globe. In this paper, logistic regression and three other artificial intelligence models (XGBoost, Artificial Neural Network and Random Forest) are described and used to predict mortality risk of individual patients. The database is based on census data for the designated area and co-morbidities obtained using data from the Ontario Health Data Platform. The dataset consisted of more than 280,000 COVID-19 cases in Ontario for a wide-range of age groups; 0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, and 90+. Findings resulting from using logistic regression, XGBoost, Artificial Neural Network and Random Forest, all demonstrate excellent discrimination (area under the curve for all models exceeded 0.948 with the best performance being 0.956 for an XGBoost model). Based on SHapley Additive exPlanations values, the importance of 24 variables are identified, and the findings indicated the highest importance variables are, in order of importance, age, date of test, sex, and presence/absence of chronic dementia. The findings from this study allow the identification of out-patients who are likely to deteriorate into severe cases, allowing medical professionals to make decisions on timely treatments. Furthermore, the methodology and results may be extended to other public health regions.


Assuntos
COVID-19 , Inteligência Artificial , Humanos , Ontário/epidemiologia , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA