Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279345

RESUMO

The skin of Arachis hypogaea L. (peanut or groundnut) is a rich source of polyphenols, which have been shown to exhibit a wider spectrum of noteworthy biological activities, including anticancer effects. However, the anticancer activity of peanut skin extracts against melanoma and colorectal cancer (CRC) cells remains elusive. In this study, we systematically investigated the cytotoxic, antiproliferative, pro-apoptotic, and anti-migration effects of peanut skin ethanolic extract and its fractions on melanoma and CRC cells. Cell viability results showed that the ethyl acetate fraction (AHE) of peanut skin ethanolic crude extract and one of the methanolic fractions (AHE-2) from ethyl acetate extraction exhibited the highest cytotoxicity against melanoma and CRC cells but not in nonmalignant human skin fibroblasts. AHE and AHE-2 effectively modulated the cell cycle-related proteins, including the suppression of cyclin-dependent kinase 4 (CDK4), cyclin-dependent kinase 6 (CDK6), phosphorylation of Retinoblastoma (p-Rb), E2F1, Cyclin A, and activation of tumor suppressor p53, which was associated with cell cycle arrest and paralleled their antiproliferative efficacies. AHE and AHE-2 could also induce caspase-dependent apoptosis and inhibit migration activities in melanoma and CRC cells. Moreover, it is noteworthy that autophagy, manifested by microtubule-associated protein light chain 3B (LC3B) conversion and the aggregation of GFP-LC3, was detected after AHE and AHE-2 treatment and provided protective responses in cancer cells. Significantly, inhibition of autophagy enhanced AHE- and AHE-2-induced cytotoxicity and apoptosis. Together, these findings not only elucidate the anticancer potential of peanut skin extracts against melanoma and CRC cells but also provide a new insight into autophagy implicated in peanut skin extracts-induced cancer cell death.


Assuntos
Acetatos , Arachis , Melanoma , Humanos , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Apoptose , Autofagia
2.
Proc Natl Acad Sci U S A ; 111(4): 1355-60, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474760

RESUMO

O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT-EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation.


Assuntos
Acetilglucosamina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Metilação de DNA , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste , Técnicas de Silenciamento de Genes , Genes Supressores de Tumor , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Estabilidade Proteica
3.
Sci Rep ; 7: 44624, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300165

RESUMO

Germline manipulation using CRISPR/Cas9 genome editing has dramatically accelerated the generation of new mouse models. Nonetheless, many metabolic disease models still depend upon laborious germline targeting, and are further complicated by the need to avoid developmental phenotypes. We sought to address these experimental limitations by generating somatic mutations in the adult liver using CRISPR/Cas9, as a new strategy to model metabolic disorders. As proof-of-principle, we targeted the low-density lipoprotein receptor (Ldlr), which when deleted, leads to severe hypercholesterolemia and atherosclerosis. Here we show that hepatic disruption of Ldlr with AAV-CRISPR results in severe hypercholesterolemia and atherosclerosis. We further demonstrate that co-disruption of Apob, whose germline loss is embryonically lethal, completely prevented disease through compensatory inhibition of hepatic LDL production. This new concept of metabolic disease modeling by somatic genome editing could be applied to many other systemic as well as liver-restricted disorders which are difficult to study by germline manipulation.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma , Doenças Metabólicas/genética , Animais , Apolipoproteínas B/genética , Sequência de Bases , Dependovirus/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Lipídeos/química , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Insercional/genética , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA