Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
NAR Genom Bioinform ; 6(1): lqae028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38482061

RESUMO

Recent COVID-19 vaccines unleashed the potential of mRNA-based therapeutics. A common bottleneck across mRNA-based therapeutic approaches is the rapid design of mRNA sequences that are translationally efficient, long-lived and non-immunogenic. Currently, an accessible software tool to aid in the design of such high-quality mRNA is lacking. Here, we present mRNAid, an open-source platform for therapeutic mRNA optimization, design and visualization that offers a variety of optimization strategies for sequence and structural features, allowing one to customize desired properties into their mRNA sequence. We experimentally demonstrate that transcripts optimized by mRNAid have characteristics comparable with commercially available sequences. To encompass additional aspects of mRNA design, we experimentally show that incorporation of certain uridine analogs and untranslated regions can further enhance stability, boost protein output and mitigate undesired immunogenicity effects. Finally, this study provides a roadmap for rational design of therapeutic mRNA transcripts.

2.
J Med Chem ; 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853179

RESUMO

Recent evidence suggests that deletion of STUB1─a pivotal negative regulator of interferon-γ sensing─may potentially clear malignant cells. However, current studies rely primarily on genetic approaches, as pharmacological inhibitors of STUB1 are lacking. Identifying a tool compound will be a step toward validating the target in a broader therapeutic sense. Herein, screening more than a billion macrocyclic peptides resulted in STUB1 binders, which were further optimized by a structure-enabled in silico design. The strategy to replace the macrocyclic peptides' hydrophilic and solvent-exposed region with a hydrophobic scaffold improved cellular permeability while maintaining the binding conformation. Further substitution of the permeability-limiting terminal aspartic acid with a tetrazole bioisostere retained the binding to a certain extent while improving permeability, suggesting a path forward. Although not optimal for cellular study, the current lead provides a valuable template for further development into selective tool compounds for STUB1 to enable target validation.

3.
ACS Cent Sci ; 7(2): 274-291, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33655066

RESUMO

Mutations to RAS proteins (H-, N-, and K-RAS) are among the most common oncogenic drivers, and tumors harboring these lesions are some of the most difficult to treat. Although covalent small molecules against KRASG12C have shown promising efficacy against lung cancers, traditional barriers remain for drugging the more prevalent KRASG12D and KRASG12V mutants. Targeted degradation has emerged as an attractive alternative approach, but for KRAS, identification of the required high-affinity ligands continues to be a challenge. Another significant hurdle is the discovery of a hybrid molecule that appends an E3 ligase-recruiting moiety in a manner that satisfies the precise geometries required for productive polyubiquitin transfer while maintaining favorable druglike properties. To gain insights into the advantages and feasibility of KRAS targeted degradation, we applied a protein-based degrader (biodegrader) approach. This workflow centers on the intracellular expression of a chimeric protein consisting of a high-affinity target-binding domain fused to an engineered E3 ligase adapter. A series of anti-RAS biodegraders spanning different RAS isoform/nucleotide-state specificities and leveraging different E3 ligases provided definitive evidence for RAS degradability. Further, these established that the functional consequences of KRAS degradation are context dependent. Of broader significance, using the exquisite degradation specificity that biodegraders can possess, we demonstrated how this technology can be applied to answer questions that other approaches cannot. Specifically, application of the GDP-state specific degrader uncovered the relative prevalence of the "off-state" of WT and various KRAS mutants in the cellular context. Finally, if delivery challenges can be addressed, anti-RAS biodegraders will be exciting candidates for clinical development.

4.
Cell Rep ; 15(1): 132-146, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27052176

RESUMO

p53 tumor suppressor maintains genomic stability, typically acting through cell-cycle arrest, senescence, and apoptosis. We discovered a function of p53 in preventing conflicts between transcription and replication, independent of its canonical roles. p53 deficiency sensitizes cells to Topoisomerase (Topo) II inhibitors, resulting in DNA damage arising spontaneously during replication. Topoisomerase IIα (TOP2A)-DNA complexes preferentially accumulate in isogenic p53 mutant or knockout cells, reflecting an increased recruitment of TOP2A to regulate DNA topology. We propose that p53 acts to prevent DNA topological stress originating from transcription during the S phase and, therefore, promotes normal replication fork progression. Consequently, replication fork progression is impaired in the absence of p53, which is reversed by transcription inhibition. Pharmacologic inhibition of transcription also attenuates DNA damage and decreases Topo-II-DNA complexes, restoring cell viability in p53-deficient cells. Together, our results demonstrate a function of p53 that may underlie its role in tumor suppression.


Assuntos
Replicação do DNA , Instabilidade Genômica , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Antígenos de Neoplasias/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Inibidores da Topoisomerase/farmacologia , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA