Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Anal Chem ; 95(33): 12313-12320, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37565815

RESUMO

The detection of formic acid vapor in the usage environment is extremely important for human health and safety. The utilization of metal-organic frameworks (MOFs) for the detection of gaseous molecules is an attractive strategy. However, the rational design and construction of MOF-based gas sensors with high sensitivity and mechanical stability remain a significant challenge. In this study, a simple approach is reported to fabricate colorimetric aerogel sensors assembled from MOF particles via ice template-assisted methods. As the aerogel sensor with staggered lamellae structures significantly provides a high air-volume intake of flowing gas, it generates a sufficient probability of contact reactions for highly mobile target molecules. Additionally, it enhances the mechanical stability by providing stress resistance between the staggered lamellae structures. Compared to conventional film sensors for the detection of formic acid molecules, aerogel sensors exhibit an 8-fold lower limit of detection, 15-fold better sensitivity at low concentrations, 34-fold faster response time, and higher stability. This approach shows great potential for rapid and real-time detection of target molecules as well as superior performance in the structural construction of various gas-sensitive materials.

2.
Bioorg Chem ; 130: 106251, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370649

RESUMO

In this work, by capping a macrolactam ring at the C-terminus of a de novo-designed peptide, namely zp80, we have constructed a small peptide library via the solid phase peptide synthesis for screening. Eight peptides bearing different aspartic acid-rich macrolactam rings but the same linear (IIRR)4 unit exhibited improved antibacterial activities, hemolytic activity, and selectivity index. Mechanistic studies revealed that they could destroy the integrity of bacterial envelope, leading to cytoplasm leakage and rapid dissipation of membrane potential. One of these peptides, zp90 with a macrolactam ring of (KaDGD), demonstrated preferential interaction with calcium ions at a stoichiometric ratio of 1:1, promoting the affinity of designed peptides to bacterial membrane. Overall, this work provides a feasible strategy for medicinal chemists to further develop potent, selective, and multifunctional de novo-designed antimicrobial peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Testes de Sensibilidade Microbiana , Peptídeos Catiônicos Antimicrobianos/farmacologia , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Bactérias
3.
Food Microbiol ; 101: 103888, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579848

RESUMO

This study investigated the effect of arginine (Arg) on the antagonistic activity of Metschnikowia citriensis against sour rot caused by Geotrichum citri-aurantii in postharvest citrus, and evaluated the possible mechanism therein. Arg treatment up-regulated the PUL genes expression, and significantly induced the pulcherriminic acid (PA) production of M. citriensis, which related to the capability of iron depletion of M. citriensis. By comparing the biocontrol effects of Arg-treated and untreated yeast cells, it was found that Arg treatment significantly enhanced the biocontrol efficacy of M. citriensis, and 5 mmol L-1 Arg exerted the best effect. Additionally, the biofilm formation ability of M. citriensis was greatly enhanced by Arg, and the higher population density of yeast cells in citrus wounds was also observed in Arg treatment groups stored both at 25 °C and 4 °C. Moreover, Arg was shown to function as a cell protectant to elevate antioxidant enzyme activity [including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX)] and intracellular trehalose content to resist oxidative stress damage, that directly helped to enhance colonization ability of yeasts in fruit wounds. These results suggest the application of Arg is a useful approach to improve the biocontrol performance of M. citriensis.


Assuntos
Agentes de Controle Biológico , Citrus , Geotrichum/patogenicidade , Metschnikowia/fisiologia , Doenças das Plantas/prevenção & controle , Arginina , Frutas/microbiologia , Doenças das Plantas/microbiologia
4.
J Sci Food Agric ; 102(15): 6930-6941, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35674404

RESUMO

BACKGROUND: Peel color regulated by pigment metabolism is one of the most crucial indicators affecting the commodity values of citrus fruit. Storage temperature is a vital environmental factor that regulates the fruit pigmentation. RESULTS: Results showed that the peel coloring process was significantly inhibited when mandarin fruit were stored at 5 and 32 °C with normal coloring at 25 °C as the control. However, the inhibitive mechanisms of 5 and 32 °C storage were different. At 5 °C, higher levels of CcNYC and CcCHL2 were detected, which indicated that 5 °C induces the circulation of chlorophyll rather than inhibits chlorophyll degradation. CcPSY2, CcCHYB, and CcZEP exhibited higher expression levels in fruit stored at 5 °C, which accelerated the accumulation of carotenoids. In fruit stored at 32 °C, CcNYC, CcPAO, and CcCHL2 exhibited lower expression levels than those fruit stored at 5 °C, and the expressions of CcPSY2, CcCHYB, and CcZEP were down regulated, implying the carotenoid synthesis was suppressed. CONCLUSION: Storage at 5 °C inhibited the postharvest coloring of mandarin fruit mainly by activating the cycle of chlorophyll, although it promotes the accumulation of carotenoids at the same time, but chlorophyll covers the color of carotenoids. Storage at 32 °C inhibited mandarin fruit coloring mainly by inhibiting the degradation of chlorophyll. Compared with the change of individual chlorophyll or carotenoid content, the change of the ratio of chlorophyll and carotenoid had a more important role in the coloration of mandarin fruit. This research offers valuable details for understanding the effect of temperature on the coloring process of postharvest citrus fruit. © 2022 Society of Chemical Industry.


Assuntos
Citrus , Citrus/química , Frutas/química , Temperatura , Carotenoides/análise , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Analyst ; 146(2): 444-449, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33179648

RESUMO

Graphdiyne (GDY), a novel two-dimensional (2D) carbon material with sp- and sp2-hybridized carbon atoms, has earned a lot of attention in recent years. Owing to its low reduction potential and highly conjugated electronic structure, it can be used as a reducing agent and stabilizer for the electroless deposition of highly dispersed Au nanoparticles. In this paper, we observe that exfoliated GDY (eGDY), the exfoliation of bulk GDY into single- or few-layered GDY in aqueous solution, can be used as an excellent substrate for the electroless deposition of very small Au nanoparticles to form a Au/eGDY nanocomposite that exhibits higher catalytic performance for the reduction of 4-nitrophenol. The higher catalytic performance is considered to arise from the high specific surface area of eGDY and the electroless deposition of active metal catalysts with eGDY as the support. Our results inspired the present investigation into the use of eGDY for the development of highly efficient catalysts.

6.
Food Microbiol ; 87: 103375, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948616

RESUMO

This study investigated the biocontrol efficiency of Metschnikowia citriensis strain FL01 against Geotrichum citri-aurantii, and evaluated possible mechanisms. The results showed that M. citriensis could effectively control the development of sour rot, and significantly inhibit the mycelial growth and spore germination of G. citri-aurantii. The population dynamics results and Scanning electron microscopy (SEM) analysis indicated that M. citriensis could rapidly colonize wounds and tightly adhere to the surface of the wounds to compete with G. citri-aurantii for nutrition and space. M. citriensis also showed the biofilm formation action in vitro. The response of G. citri-aurantii to different components of M. citriensis culture showed that only the yeast cells but not the extracellular metabolites and the volatile organic compounds (VOCs) exhibited inhibitory effect on the growth of G. citri-aurantii. M. citriensis adhered to the hyphae of G. citri-aurantii loosely and sparsely, and the production of lytic enzymes ß-1, 3-glucanase (GLU) and Chitinase (CHI) could not be induced by G. citri-auranti. Iron affected the pulcherrimin pigment production and antagonism of M. citriensis indicating iron depletion as the most important antagonistic mechanism. Besides, M. citriensis also induced resistance of fruit against sour rot. These results suggested that M. citriensis could be used as the potential alternative of fungicides to control postharvest pathogens on citrus fruit.


Assuntos
Antibiose , Citrus/microbiologia , Geotrichum/crescimento & desenvolvimento , Metschnikowia/fisiologia , Doenças das Plantas/microbiologia , Frutas/microbiologia , Geotrichum/fisiologia , Metschnikowia/crescimento & desenvolvimento
7.
J Sci Food Agric ; 100(10): 3812-3821, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32248529

RESUMO

BACKGROUND: Penicillium digitatum is one of the most important pathogens causing citrus green mold, leading to significant economic losses. Traditionally, synthetic fungicides are used to control diseases. However, the side effects of fungicides should not be ignored. Thus, antagonistic yeasts were proposed to be safe and effective alternatives for managing diseases. Orchards are excellent sources of naturally occurring antagonists against pathogens. Therefore, in the present study, antagonistic yeasts obtained from orchards were screened, and the possible biocontrol mechanisms of the most promising yeast were investigated. RESULTS: Seventy-eight isolates of yeasts (15 species of 10 genera) were obtained from citrus orchards. In in vitro assays, 16 strains showed antifungal activity against Pichia digitatum and 15 strains showed biocontrol potential against green mold on Olinda oranges. Pichia galeiformis (BAF03) exhibited the best antagonistic activity against P. digitatum during 6 days storage at 25 °C and a good antagonistic activity during 29 days at 4 °C. Pichia galeiformis (BAF03) could colonize and amplify quickly in wounded citrus. Scanning electron microscopy results showed that the citrus wound was colonised by the yeast. A total of eight volatile organic compounds (VOCs) were identified by gas chromatography-mass spectrometry The VOCs produced by P. galeiformis (BAF03) efficiently inhibited P. digitatum. CONCLUSION: Pichia galeiformis (BAF03) isolated from a citrus orchard showed potential to control postharvest green mold of citrus. The possible mechanisms of action likely include competition for space and nutrients as well as production of VOCs.


Assuntos
Antibiose , Citrus/microbiologia , Penicillium/fisiologia , Pichia/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
8.
J Dairy Sci ; 99(9): 7002-7015, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27423943

RESUMO

The growing emergence of antibiotic-resistant bacteria in the food industry needs to be controlled with effective antimicrobials. In this study, bacteriocin MN047 A (BMA) was found to have antibacterial activity against multidrug-resistant bacteria. It was produced by Lactobacillus crustorum MN047, which was first isolated from koumiss, a traditional fermented dairy product from Xinjiang Autonomous Region, China. It was purified by ammonium sulfate precipitation, ion-exchange chromatography, and reversed-phase chromatography. It had a low molecular mass of 1,770.89 Da according to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and the sequence was identified as QLPWQILGIVAGMFQA by liquid chromatography-tandem mass spectrometry analysis and MASCOT searching. It was proteinaceous in nature: the bacteriocin was digested by protease but not by α-amylase or lipase. It showed broad pH toleration (pH 2-11), good thermostability, and good storage stability. It had a broad inhibitory spectrum, including both gram-positive and gram-negative bacteria. Growth curve and time-kill kinetics indicated that it was bactericidal to the indicator strains, and this finding was verified by scanning electron microscope and transmission electron microscope after treatment with BMA. As well, BMA halted the growth of Staphylococcus aureus and Escherichia coli in the G1 and G2/M phases according to cell-cycle analysis by flow cytometry, indicating that BMA had comprehensive inhibitory effects against foodborne pathogens.


Assuntos
Kumis/microbiologia , Lactobacillus/metabolismo , Animais , Bacteriocinas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Lactobacillus/isolamento & purificação , Peso Molecular , Staphylococcus aureus/efeitos dos fármacos
9.
Food Chem ; 447: 138962, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518614

RESUMO

A bacteriocin paracin wx3 was investigated as a candidate of natural preservative to control green pepper soft rot. Firstly, paracin wx3 was heterologously expressed in Pichia pastoris X33 with an improved yield of 0.537 g/L. Its size and amino acid sequence were confirmed by Tricine-SDS-PAGE and LC-MS/MS. Then, result of antibacterial activity showed that its MIC value against Pectobacterium carotovorum was 16 µg/mL. In vitro, paracin wx3 completely killed the pathogen at high concentrations ≥8 × MIC. In vivo, disease incidence of green pepper soft rot was decreased from 90% (control) to <2% (8 × MIC). Subsequently, results of action mode showed that paracin wx3 inhibited the growth of pathogen by pore-formation on cell membrane. Last, paracin wx3 treatment reduced losses of weight, firmness, total soluble solid, Vc of green pepper during storage. It also inhibited the production of soft rot volatile p-xylene, 1-butanol, 2-methyl-2-propanol, 3-hydroxybutan-2-one-D, 2-pentyl furan, butanal, etc.


Assuntos
Bacteriocinas , Capsicum , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Capsicum/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/química , Doenças das Plantas/microbiologia
10.
Foods ; 13(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38790749

RESUMO

Fresh-cut vegetables are widely consumed, but there is no food preservative available to selectively inhibit vancomycin-resistant E. faecalis, which is a serious health menace in fresh-cut vegetables. To develop a promising food biopreservative, a bacteriocin, paracin wx7, was synthesized, showing selective inhibition against E. faecalis with MIC values of 4-8 µM. It showed instant bactericidal mode within 1 h at high concentrations with concomitant cell lysis against vancomycin-resistant E. faecalis. Its lethal effect was visualized in a dose-dependent manner by PI/SYTO9 staining observation. The results of an in vivo control experiment carried out on E. faecalis in fresh-cut lettuce showed that 99.97% of vancomycin-resistant E. faecalis were dead after 64 µM paracin wx7 treatment for 7 days without influencing total bacteria. Further, the action mechanism of paracin wx7 was investigated. Confocal microscopy showed that paracin wx7 was located both on the cell envelope and in cytoplasm. For the cell envelope, the studies of membrane permeability using SYTOX Green dyeing and DNA leakage revealed that paracin wx7 damaged the membrane integrity of E. faecalis. Simultaneously, it exhibited membrane depolarization after analysis using DiSC3(5). Damage to the cell envelope resulted in cell deformation observed by scanning electron microscopy. On entering the cytoplasm, the paracin wx7 induced the production of endogenous reactive oxygen species.

11.
Chem Commun (Camb) ; 60(18): 2528-2531, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329139

RESUMO

The electrocatalytic nitrogen reduction reaction (eNRR) under ambient conditions is deemed a promising alternative for NH3 synthesis. In this paper, an FeP-Fe3O4 nanocomposite electrocatalyst was prepared by phosphating annealing using Fe2O3 as a precursor, and the resulting FeP-Fe3O4 exhibited excellent N2-to-NH3-producing activity over a wide potential window. The highest faradaic efficiency of FeP-Fe3O4 is 11.02% at -0.1 V vs. reversible hydrogen electrode (RHE), and the maximum NH3 yield reaches 12.73 µg h-1 mgcat-1, comparable to or exceeding the reported values in this field. Furthermore, the FeP-Fe3O4 nanocomposite electrocatalyst presents high electrochemical stability, selectivity, and durability.

12.
ACS Appl Mater Interfaces ; 16(5): 6033-6047, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284523

RESUMO

Transition metal selenides have received considerable attention as promising candidates for lithium-ion battery (LIB) anode materials due to their high theoretical capacity and safety characteristics. However, their commercial viability is hampered by insufficient conductivity and volumetric fluctuations during cycling. To address these issues, we have utilized bimetallic metal-organic frameworks to fabricate CoNiSe2/C nanodecahedral composites with a high specific surface area, abundant pore structures, and a surface-coated layer of the carbon-based matrix. The optimized material, CoNiSe2/C-700, exhibited impressive Li+ storage performance with an initial discharge specific capacity of 2125.5 mA h g-1 at 0.1 A g-1 and a Coulombic efficiency of 98% over cycles. Even after 1000 cycles at 1.0 A g-1, a reversible discharge specific capacity of 549.9 mA h g-1 was achieved. The research highlights the synergistic effect of bimetallic selenides, well-defined nanodecahedral structures, stable carbon networks, and the formation of smaller particles during initial cycling, all of which contribute to improved electronic performance, reduced volume change, increased Li+ storage active sites, and shorter Li+ diffusion paths. In addition, the pseudocapacitance behavior contributes significantly to the high energy storage of Li+. These features facilitate rapid charge transfer and help maintain a stable solid-electrolyte interphase layer, which ultimately leads to an excellent electrochemical performance. This work provides a viable approach for fabricating bimetallic selenides as anode materials for high-performance LIBs through architectural engineering and compositional tailoring.

13.
Int J Food Microbiol ; 386: 110013, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36436410

RESUMO

The aim of this work was to study the capability and mechanism of enhancing the yield of pulcherriminic acid (PA) produced by Metschnikowia citriensis FL01 with the help of tryptophan for the control of postharvest diseases on citrus caused by Penicillium italicum, Geotrichum citri-aurantii and Penicillium digitatum. The adding of 10 mmol/L tryptophan to the growth medium resulted in the widest pulcherrimin pigment zone produced by M. citriensis FL01. The adding of tryptophan to the growth medium upregulated A3136 and A3022 gene expression (responsible for leucyl-tRNA biosynthesis from leucine), downregulated A1350 gene expression (responsible for the biosynthesis of leucine to branched-chain fatty acids), and decreased the content of intracellular leucine in M. citriensis FL01, speculating that the addition of tryptophan in the growth medium induced leucine conversion toward leucyl-tRNA in M. citriensis FL01. Moreover, the adding of tryptophan to the growth medium upregulated PULs (responsible PA biosynthesis) and Snf2 (transcriptional regulator) gene expression and promoted intracellular, extracellular or total PA production by M. citriensis FL01 in liquid medium. In addition, the addition of tryptophan in the growth medium showed no effect on the growth of M. citriensis FL01 itself in liquid medium, while the population dynamics in citrus fruit wounds of M. citriensis FL01 with the addition of tryptophan in the growth medium were increased compared with those of M. citriensis FL01. What's more, M. citriensis FL01 with the addition of tryptophan in the growth medium completely inhibited the growth of pathogens in vitro. The disease incidences and lesion diameters of blue mold, sour rot and green mold on citrus fruit were lower in group which treated with M. citriensis FL01 containing tryptophan in the growth medium than that treated with M. citriensis FL01 alone. Overall, the postharvest biocontrol of citrus with M. citriensis FL01 containing 10 mmol/L tryptophan in the growth medium is a promising approach to protect these fruits from blue mold, sour rot and green mold.


Assuntos
Citrus , Micoses , Penicillium , Triptofano/farmacologia , Citrus/microbiologia , Leucina/farmacologia , Fungos , Frutas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
14.
Food Chem ; 407: 135103, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493476

RESUMO

Biological antagonists are a series of microbes that can control pathogens to reduce the incidence of disease or reduce symptoms. Herein, four varieties of citrus fruit were selected to perform an amplicon sequencing on their epiphytic microbiota to get a systematic understanding of them. Co-occurrence network, Venn, and LefSe analysis were performed to filter to 24 genera which represent the universality, specificity, and correlation among samples. Functional analysis hinted that the genes related to chitinase, which most of these 24 bacteria carry, might lead to a disease-suppressive phenotype. 115 strains of epiphytic bacteria were isolated, and the bacterial synthetic community was constructed by 8 strains. The in vivo test results indicated they were able to reduce pathogen development for a longer time than separate inoculation. Collectively, this study showed the disease control potential provided by native epiphytic bacteria of fruit and give a new strategy to sustainable agriculture.


Assuntos
Citrus , Microbiota , Citrus/microbiologia , Bactérias/genética , Frutas/genética , Frutas/microbiologia
15.
Chem Commun (Camb) ; 59(77): 11508-11511, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37694564

RESUMO

We report a strategy for the self-assembly of zeolitic imidazolate framework-8 (ZIF-8) particles induced by the evaporation of a methanol-water mixture. This strategy effectively suppresses the coffee ring effect, facilitates the rapid assembly of ZIF-8 particles, and improves the orientation and optical properties of self-assembled superstructures.

16.
J Mater Chem B ; 11(36): 8649-8656, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37623744

RESUMO

Charge-transfer (CT) cocrystals consisting of an electron donor and acceptor have gained attention for designing photothermal (PT) conversion materials with potential for biomedical and therapeutic use. However, the applicability of CT cocrystals is limited by their low stability and aqueous dispersity in biological settings. In this study, we present the self-assembly of CT cocrystals within hydrogen-bonded organic frameworks (HOFs), which not only allows for the dispersion and stabilization of cocrystals in aqueous solution but also promotes the CT interaction within the confined space of HOFs for photothermal conversion. We demonstrate that the CT interaction-driven self-assembly of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) with PFC-1 HOFs results in the formation of cocrystal-encapsulated TQC@PFC-1 while retaining the crystalline structure of the cocrystal and PFC-1. TQC@PFC-1, in particular, exhibits significant absorption in the second near-infrared region (NIR-II) and excellent photothermal conversion efficiency, as high as 32%. Cellular delivery studies show that TQC@PFC-1 can be internalized in different types of cancer cells, leading to an effective NIR-II photothermal therapy effect both in cultured cells and in vivo. We anticipate that the strategy of self-assembly and stabilization of CT cocrystals in nanoscale HOFs opens the path for tuning their photophysical properties and interfacing cocrystals with biological settings for photothermal therapeutic applications.


Assuntos
Neoplasias , Terapia Fototérmica , Humanos , Neoplasias/tratamento farmacológico , Hidrogênio
17.
Top Curr Chem (Cham) ; 381(4): 13, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103594

RESUMO

Solid-state nanopores/nanochannels, with their high stability, tunable geometry, and controllable surface chemistry, have recently become an important tool for constructing biosensors. Compared with traditional biosensors, biosensors constructed with solid-state nanopores/nanochannels exhibit significant advantages of high sensitivity, high specificity, and high spatiotemporal resolution in the detection single entities (such as single molecules, single particles, and single cells) due to their unique nanoconfined space-induced target enrichment effect. Generally, the solid-state nanopore/nanochannel modification method is the inner wall modification, and the detection principles are the resistive pulse method and the steady-state ion current method. During the detection process, solid-state nanopore/nanochannel is easily blocked by single entities, and interfering substances easily enter the solid-state nanopore/nanochannel to generate interference signals, resulting in inaccurate measurement results. In addition, the problem of low flux in the detection process of solid-state nanopore/nanochannel, these defects limit the application of solid-state nanopore/nanochannel. In this review, we introduce the preparation and functionalization of solid-state nanopore/nanochannel, the research progress in the field of single entities sensing, and the novel sensing strategies on solving the above problems in solid-state nanopore/nanochannel single-entity sensing. At the same time, the challenges and prospects of solid-state nanopore/nanochannel for single-entity electrochemical sensing are also discussed.


Assuntos
Técnicas Biossensoriais , Nanoporos , Técnicas Biossensoriais/métodos , Nanotecnologia
18.
Food Chem ; 413: 135647, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796263

RESUMO

The co-existence of various pathogenic bacteria on the surface of pork products exacerbates difficulties in food safety control. Developing broad-spectrum and stable antibacterial agents that are not antibiotics is an unmet need. To address this issue, all l-arginine residues of a reported peptide (IIRR)4-NH2 (zp80) were substituted with the corresponding D enantiomers. This novel peptide (IIrr)4-NH2 (zp80r) was expected to maintain favourable bioactivity against ESKAPE strains and have enhanced proteolytic stability compared with zp80. In a series of experiments, zp80r maintained favourable bioactivities against starvation-induced persisters. Electron microscopy and fluorescent dye assays were used to verify the antibacterial mechanism of zp80r. Importantly, zp80r reduced bacterial colonies in chilled fresh pork contaminated with multiple bacterial species. This newly designed peptide is a potential antibacterial candidate to combat problematic foodborne pathogens during storage of pork.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Carne Vermelha/análise , Antibacterianos/farmacologia , Peptídeos/farmacologia , Bactérias
19.
Nanomicro Lett ; 16(1): 32, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999792

RESUMO

Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions, especially electrocatalytic hydrogen evolution reaction (HER). In recent years, deformable catalysts for HER have made great progress and would become a research hotspot. The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration. The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties. Here, firstly, we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro-nanostructures evolution in catalytic HER process. Secondly, a series of strategies to design highly active catalysts based on the mechanical flexibility of low-dimensional nanomaterials were summarized. Last but not least, we presented the challenges and prospects of the study of flexible and deformable micro-nanostructures of electrocatalysts, which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.

20.
Int J Food Microbiol ; 379: 109866, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35944358

RESUMO

Microbial antagonists are effective and environmentally friendly in controlling postharvest diseases of fruit. The present study investigated the influence of D. nepalensis on epiphytic microbiome and postharvest decay of jujube. Results showed that D. nepalensis notably reduced fungal decay, maintained the fruit firmness and delayed discoloration. The epiphytic microbiome revealed that D. nepalensis changed the fungal communities, but few influence on bacterial communities were observed. D. nepalensis, as the dominant population in the treatment group, decreased the abundance of pathogenic fungi of Alternaria, Penicillium, Fusarium and Botrytis, while increased the beneficial bacteria of Pantoea. The canonical correspondence analysis revealed that Debaryomyces was negatively correlated with the decay rate, whereas Penicillium, Acremonium, Rhodosporidiobolus and Hansfordia were positively correlated. In conclusion, D. nepalensis altered the successional process of fungal and bacterial communities to reduce the decay rate of jujube during storage.


Assuntos
Microbiota , Penicillium , Ziziphus , Alternaria , Bactérias , Conservação de Alimentos/métodos , Frutas/microbiologia , Saccharomycetales , Ziziphus/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA