Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.654
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(15): 2844-2857.e10, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35662396

RESUMO

Lysosomes are the main organelles in macrophages for killing invading bacteria. However, the precise mechanism underlying lysosomal biogenesis upon bacterial infection remains enigmatic. We demonstrate here that LPS stimulation increases IRG1-dependent itaconate production, which promotes lysosomal biogenesis by activating the transcription factor, TFEB. Mechanistically, itaconate directly alkylates human TFEB at cysteine 212 (Cys270 in mice) to induce its nuclear localization by antagonizing mTOR-mediated phosphorylation and cytosolic retention. Functionally, abrogation of itaconate synthesis by IRG1/Irg1 knockout or expression of an alkylation-deficient TFEB mutant impairs the antibacterial ability of macrophages in vitro. Furthermore, knockin mice harboring an alkylation-deficient TFEB mutant display elevated susceptibility to Salmonella typhimurium infection, whereas in vivo treatment of OI, a cell-permeable itaconate derivative, limits inflammation. Our study identifies itaconate as an endogenous metabolite that functions as a lysosomal inducer in macrophages in response to bacterial infection, implying the potential therapeutic utility of itaconate in treating human bacterial infection.


Assuntos
Lisossomos , Succinatos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Humanos , Imunidade Inata , Lisossomos/metabolismo , Camundongos , Succinatos/metabolismo , Succinatos/farmacologia
2.
Circ Res ; 135(1): 93-109, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770649

RESUMO

BACKGROUND: Hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) and consequent pulmonary vascular remodeling are the crucial pathological features of pulmonary hypertension (PH). Protein methylation has been shown to be critically involved in PASMC proliferation and PH, but the underlying mechanism remains largely unknown. METHODS: PH animal models were generated by treating mice/rats with chronic hypoxia for 4 weeks. SMYD2-vTg mice (vascular smooth muscle cell-specific suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 (deformed epidural auto-regulatory factor-1) domain-containing protein 2 transgenic) or wild-type rats and mice treated with LLY-507 (3-cyano-5-{2-[4-[2-(3-methylindol-1-yl)ethyl]piperazin-1-yl]-phenyl}-N-[(3-pyrrolidin-1-yl)propyl]benzamide) were used to investigate the function of SMYD2 (suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 domain-containing protein 2) on PH development in vivo. Primary cultured rat PASMCs with SMYD2 knockdown or overexpression were used to explore the effects of SMYD2 on proliferation and to decipher the underlying mechanism. RESULTS: We demonstrated that the expression of the lysine methyltransferase SMYD2 was upregulated in the smooth muscle cells of pulmonary arteries from patients with PH and hypoxia-exposed rats/mice and in the cytoplasm of hypoxia-induced rat PASMCs. More importantly, targeted inhibition of SMYD2 by LLY-507 significantly attenuated hypoxia-induced pulmonary vascular remodeling and PH development in both male and female rats in vivo and reduced rat PASMC hyperproliferation in vitro. In contrast, SMYD2-vTg mice exhibited more severe PH phenotypes and related pathological changes than nontransgenic mice after 4 weeks of chronic hypoxia treatment. Furthermore, SMYD2 overexpression promoted, while SMYD2 knockdown suppressed, the proliferation of rat PASMCs by affecting the cell cycle checkpoint between S and G2 phases. Mechanistically, we revealed that SMYD2 directly interacted with and monomethylated PPARγ (peroxisome proliferator-activated receptor gamma) to inhibit the nuclear translocation and transcriptional activity of PPARγ, which further promoted mitophagy to facilitate PASMC proliferation and PH development. Furthermore, rosiglitazone, a PPARγ agonist, largely abolished the detrimental effects of SMYD2 overexpression on PASMC proliferation and PH. CONCLUSIONS: Our results demonstrated that SMYD2 monomethylates nonhistone PPARγ and inhibits its nuclear translocation and activation to accelerate PASMC proliferation and PH by triggering mitophagy, indicating that targeting SMYD2 or activating PPARγ are potential strategies for the prevention of PH.


Assuntos
Histona-Lisina N-Metiltransferase , Hipertensão Pulmonar , Hipóxia , Mitofagia , Músculo Liso Vascular , Miócitos de Músculo Liso , PPAR gama , Artéria Pulmonar , Ratos Sprague-Dawley , Animais , Humanos , Masculino , Camundongos , Ratos , Proliferação de Células , Células Cultivadas , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/genética , Hipóxia/complicações , Hipóxia/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Remodelação Vascular
3.
Mol Cell ; 72(4): 650-660.e8, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30392930

RESUMO

DNA replication is initiated by assembly of the kinase cell division cycle 7 (CDC7) with its regulatory activation subunit, activator of S-phase kinase (ASK), to activate DNA helicase. However, the mechanism underlying regulation of CDC7-ASK complex is unclear. Here, we show that ADP generated from CDC7-mediated MCM phosphorylation binds to an allosteric region of CDC7, disrupts CDC7-ASK interaction, and inhibits CDC7-ASK activity in a feedback way. EGFR- and ERK-activated casein kinase 2α (CK2α) phosphorylates nuclear phosphoglycerate kinase (PGK) 1 at S256, resulting in interaction of PGK1 with CDC7. CDC7-bound PGK1 converts ADP to ATP, thereby abrogating the inhibitory effect of ADP on CDC7-ASK activity, promoting the recruitment of DNA helicase to replication origins, DNA replication, cell proliferation, and brain tumorigenesis. These findings reveal an instrumental self-regulatory mechanism of CDC7-ASK activity by its kinase reaction product ADP and a nonglycolytic role for PGK1 in abrogating this negative feedback in promoting tumor development.


Assuntos
Difosfato de Adenosina/metabolismo , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Replicação do DNA , Fosfoglicerato Quinase/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Caseína Quinase II/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , DNA Helicases/genética , DNA Helicases/metabolismo , Feminino , Xenoenxertos , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfoglicerato Quinase/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Origem de Replicação
4.
Nucleic Acids Res ; 52(11): 6145-6157, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38783063

RESUMO

Native prokaryotic promoters share common sequence patterns, but are species dependent. For understudied species with limited data, it is challenging to predict the strength of existing promoters and generate novel promoters. Here, we developed PromoGen, a collection of nucleotide language models to generate species-specific functional promoters, across dozens of species in a data and parameter efficient way. Twenty-seven species-specific models in this collection were finetuned from the pretrained model which was trained on multi-species promoters. When systematically compared with native promoters, the Escherichia coli- and Bacillus subtilis-specific artificial PromoGen-generated promoters (PGPs) were demonstrated to hold all distribution patterns of native promoters. A regression model was developed to score generated either by PromoGen or by another competitive neural network, and the overall score of PGPs is higher. Encouraged by in silico analysis, we further experimentally characterized twenty-two B. subtilis PGPs, results showed that four of tested PGPs reached the strong promoter level while all were active. Furthermore, we developed a user-friendly website to generate species-specific promoters for 27 different species by PromoGen. This work presented an efficient deep-learning strategy for de novo species-specific promoter generation even with limited datasets, providing valuable promoter toolboxes especially for the metabolic engineering of understudied microorganisms.


Assuntos
Bacillus subtilis , Aprendizado Profundo , Escherichia coli , Regiões Promotoras Genéticas , Bacillus subtilis/genética , Escherichia coli/genética , Redes Neurais de Computação , Especificidade da Espécie
5.
Proc Natl Acad Sci U S A ; 120(18): e2300380120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098058

RESUMO

A fundamental understanding of cell shaping with confined flexible filaments, including microtubules, actin filaments, and engineered nanotubes, has been limited by the complex interplay between the cell membrane and encapsulated filaments. Here, combining theoretical modeling and molecular dynamics simulations, we investigate the packing of an open or closed filament inside a vesicle. Depending on the relative stiffness and size of the filament to the vesicle as well as the osmotic pressure, the vesicle could evolve from an axisymmetric configuration to a general configuration with a maximum of three reflection planes, and the filament could bend in or out of plane or even coil up. A plethora of system morphologies are determined. Morphological phase diagrams predicting conditions of shape and symmetry transitions are established. Organization of actin filaments or bundles, microtubules, and nanotube rings inside vesicles, liposomes, or cells are discussed. Our results provide a theoretical basis to understand cell shaping and cellular stability and to help guide the development and design of artificial cells and biohybrid microrobots.


Assuntos
Citoesqueleto de Actina , Simulação de Dinâmica Molecular , Citoesqueleto de Actina/metabolismo , Membrana Celular , Lipossomos/metabolismo , Microtúbulos
6.
Proc Natl Acad Sci U S A ; 120(49): e2311166120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011549

RESUMO

Chemical communication plays a vital role in mate attraction and discrimination among many insect species. Here, we document a unique example of semiochemical parsimony, where four chemicals act as both aphrodisiacs and anti-aphrodisiacs in different contexts in Bactrocera dorsalis. Specifically, we identified four female-specific semiochemicals, ethyl laurate, ethyl myristate, ethyl cis-9-hexadecenoate, and ethyl palmitate, which serve as aphrodisiacs to attract male flies and arouse male courtship. Interestingly, these semiochemicals, when sexually transferred to males during mating, can function as anti-aphrodisiacs, inhibiting the receptivity of subsequent female mates. We further showed that the expression of elongase11, a key enzyme involved in the biosynthesis of these semiochemicals, is under the control of doublesex, facilitating the exclusive biosynthesis of these four semiochemicals in females and guaranteeing effective chemical communication. The dual roles of these semiochemicals not only ensure the attractiveness of mature females but also provide a simple yet reliable mechanism for female mate discrimination. These findings provide insights into chemical communication in B. dorsalis and add elements for the design of pest control programs.


Assuntos
Afrodisíacos , Tephritidae , Animais , Feminino , Masculino , Feromônios/metabolismo , Corte , Ácidos Graxos Monoinsaturados/farmacologia , Comportamento Sexual Animal
7.
Proc Natl Acad Sci U S A ; 120(1): e2214757120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574680

RESUMO

Cell membrane-coated nanoparticles are emerging as a new type of promising nanomaterials for immune evasion and targeted delivery. An underlying premise is that the unique biological functions of natural cell membranes can be conferred on the inherent physiochemical properties of nanoparticles by coating them with a cell membrane. However, the extent to which the membrane protein properties are preserved on these nanoparticles and the consequent bio-nano interactions are largely unexplored. Here, we synthesized two mesenchymal stem cell (MSC) membrane-coated silica nanoparticles (MCSNs), which have similar sizes but distinctly different stiffness values (MPa and GPa). Unexpectedly, a much lower macrophage uptake, but much higher cancer cell uptake, was found with the soft MCSNs compared with the stiff MCSNs. Intriguingly, we discovered that the soft MCSNs enabled the forming of a more protein-rich membrane coating and that coating had a high content of the MSC chemokine CXCR4 and MSC surface marker CD90. This led to the soft MCSNs enhancing cancer cell uptake mediated by the CD90/integrin receptor-mediated pathway and CXCR4/SDF-1 pathways. These findings provide a major step forward in our fundamental understanding of how the combination of nanoparticle elasticity and membrane coating may be used to facilitate bio-nano interactions and pave the way forward in the development of more effective cancer nanomedicines.


Assuntos
Nanopartículas , Neoplasias , Humanos , Membrana Celular/metabolismo , Nanopartículas/química , Proteínas/metabolismo , Neoplasias/metabolismo , Elasticidade
8.
J Biol Chem ; 300(3): 105681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272224

RESUMO

The mechanistic target of rapamycin (mTOR) forms two distinct complexes: rapamycin-sensitive mTOR complex 1 (mTORC1) and rapamycin-insensitive mTORC2. mTORC2 primarily regulates cell survival by phosphorylating Akt, though the upstream regulation of mTORC2 remains less well-defined than that of mTORC1. In this study, we show that NOP14, a 40S ribosome biogenesis factor and a target of the mTORC1-S6K axis, plays an essential role in mTORC2 signaling. Knockdown of NOP14 led to mTORC2 inactivation and Akt destabilization. Conversely, overexpression of NOP14 stimulated mTORC2-Akt activation and enhanced cell proliferation. Fractionation and coimmunoprecipitation assays demonstrated that the mTORC2 complex was recruited to the rough endoplasmic reticulum through association with endoplasmic reticulum-bound ribosomes. In vivo, high levels of NOP14 correlated with poor prognosis in multiple cancer types. Notably, cancer cells with NOP14 high expression exhibit increased sensitivity to mTOR inhibitors, because the feedback activation of the PI3K-PDK1-Akt axis by mTORC1 inhibition was compensated by mTORC2 inhibition partly through NOP14 downregulation. In conclusion, our findings reveal a spatial regulation of mTORC2-Akt signaling and identify ribosome biogenesis as a potential biomarker for assessing rapalog response in cancer therapy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sirolimo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Humanos , Linhagem Celular , Ribossomos/metabolismo , Inibidores de Proteínas Quinases/farmacologia
9.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37539831

RESUMO

Duplex sequencing technology has been widely used in the detection of low-frequency mutations in circulating tumor deoxyribonucleic acid (DNA), but how to determine the sequencing depth and other experimental parameters to ensure the stable detection of low-frequency mutations is still an urgent problem to be solved. The mutation detection rules of duplex sequencing constrain not only the number of mutated templates but also the number of mutation-supportive reads corresponding to each forward and reverse strand of the mutated templates. To tackle this problem, we proposed a Depth Estimation model for stable detection of Low-Frequency MUTations in duplex sequencing (DELFMUT), which models the identity correspondence and quantitative relationships between templates and reads using the zero-truncated negative binomial distribution without considering the sequences composed of bases. The results of DELFMUT were verified by real duplex sequencing data. In the case of known mutation frequency and mutation detection rule, DELFMUT can recommend the combinations of DNA input and sequencing depth to guarantee the stable detection of mutations, and it has a great application value in guiding the experimental parameter setting of duplex sequencing technology.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Neoplasias/genética , Taxa de Mutação , DNA
10.
PLoS Genet ; 18(6): e1010244, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653396

RESUMO

Gene drives for mosquito population modification are novel tools for malaria control. Strategies to safely test antimalarial effectors in the field are required. Here, we modified the Anopheles gambiae zpg locus to host a CRISPR/Cas9 integral gene drive allele (zpgD) and characterized its behaviour and resistance profile. We found that zpgD dominantly sterilizes females but can induce efficient drive at other loci when it itself encounters resistance. We combined zpgD with multiple previously characterized non-autonomous payload drives and found that, as zpgD self-eliminates, it leads to conversion of mosquito cage populations at these loci. Our results demonstrate how self-eliminating drivers could allow safe testing of non-autonomous effector-traits by local population modification. They also suggest that after engendering resistance, gene drives intended for population suppression could nevertheless serve to propagate subsequently released non-autonomous payload genes, allowing modification of vector populations initially targeted for suppression.


Assuntos
Anopheles , Antimaláricos , Tecnologia de Impulso Genético , Malária , Animais , Anopheles/genética , Feminino , Tecnologia de Impulso Genético/métodos , Malária/genética , Controle de Mosquitos/métodos , Mosquitos Vetores/genética
11.
Proc Natl Acad Sci U S A ; 119(32): e2202371119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917353

RESUMO

Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Proteínas Virais , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/uso terapêutico , Microscopia Crioeletrônica , Infecções por Vírus Epstein-Barr/prevenção & controle , Infecções por Vírus Epstein-Barr/terapia , Herpesvirus Humano 4/imunologia , Humanos , Fusão de Membrana , Camundongos , Proteínas Virais/imunologia
12.
Apoptosis ; 29(5-6): 835-848, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573492

RESUMO

Oxaliplatin resistance poses a significant challenge in colorectal cancer (CRC) therapy, necessitating further investigation into the underlying molecular mechanisms. This study aimed to elucidate the regulatory role of SNHG4 in oxaliplatin resistance and ferroptosis in CRC. Our findings revealed that treatment with oxaliplatin led to downregulation of SNHG4 expression in CRC cells, while resistant CRC cells exhibited higher levels of SNHG4 compared to parental cells. Silencing SNHG4 attenuated oxaliplatin resistance and reduced the expression of resistance-related proteins MRD1 and MPR1. Furthermore, induction of ferroptosis effectively diminished oxaliplatin resistance in both parental and resistant CRC cells. Notably, ferroptosis induction resulted in decreased SNHG4 expression, whereas SNHG4 overexpression suppressed ferroptosis. Through FISH, RIP, and RNA pull-down assays, we identified the cytoplasmic localization of both SNHG4 and PTEN, establishing that SNHG4 directly targets PTEN, thereby reducing mRNA stability in CRC cells. Silencing PTEN abrogated the impact of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells. In vivo experiments further validated the influence of SNHG4 on oxaliplatin resistance and ferroptosis in CRC cells through PTEN regulation. In conclusion, SNHG4 promotes resistance to oxaliplatin in CRC cells by suppressing ferroptosis through instability of PTEN, thus serves as a target for patients with oxaliplatin-base chemoresistance.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Oxaliplatina , PTEN Fosfo-Hidrolase , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Oxaliplatina/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino
13.
Anal Chem ; 96(21): 8416-8423, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38755966

RESUMO

Nanogap-based plasmonic metal nanocrystals have been applied in surface-enhanced Raman scattering detection, while the closed and insufficient electromagnetic fields as well as the nonreproducible Raman signal of the substrate greatly restrict the actual application. Herein, a highly uniform Au/AgAu monolayer with abundant nanogaps and huge electromagnetic enhancement is prepared, which shows ultrasensitive and reproducible SERS detection. Au/AgAu with an inner nanogap is first prepared based on Au nanotriangles, and the nanogap is opened from the three tips via a subsequent etching process. The open-gap Au/AgAu displays much higher SERS efficiency than Au and Au/AgAu with an inner nanogap on detecting crystal violet due to the open-gap induced electromagnetic enhancement and improved molecular absorption. Furthermore, the open-gap Au/AgAu monolayer is prepared via interfacial self-assembly, which shows further improved SERS due to the dense and strong hotspots in the nanocavities induced by the electromagnetic coupling between adjacent open gaps. The monolayer possesses excellent signal stability, uniformity, and reproducibility. The analytic enhancement factor and relative standard deviation reach to 2.12 × 108 and 4.65% on detecting crystal violet, respectively. Moreover, the monolayer achieves efficient detection of thiram in apple juice, biphenyl-4-thiol, 4-mercaptobenzoic, melamine, and a mixed solution of four different molecules, showing great promise in practical detection.

14.
BMC Plant Biol ; 24(1): 410, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760710

RESUMO

Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Rosa , Rosa/genética , Rosa/metabolismo , Cromossomos de Plantas/genética , Bases de Dados Genéticas , Metabolismo Secundário/genética , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biossíntese
15.
PLoS Pathog ; 18(6): e1010620, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696443

RESUMO

Intestinal microbial metabolites have been increasingly recognized as important regulators of enteric viral infection. However, very little information is available about which specific microbiota-derived metabolites are crucial for swine enteric coronavirus (SECoV) infection in vivo. Using swine acute diarrhea syndrome (SADS)-CoV as a model, we were able to identify a greatly altered bile acid (BA) profile in the small intestine of infected piglets by untargeted metabolomic analysis. Using a newly established ex vivo model-the stem cell-derived porcine intestinal enteroid (PIE) culture-we demonstrated that certain BAs, cholic acid (CA) in particular, enhance SADS-CoV replication by acting on PIEs at the early phase of infection. We ruled out the possibility that CA exerts an augmenting effect on viral replication through classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling, innate immune suppression or viral attachment. BA induced multiple cellular responses including rapid changes in caveolae-mediated endocytosis, endosomal acidification and dynamics of the endosomal/lysosomal system that are critical for SADS-CoV replication. Thus, our findings shed light on how SECoVs exploit microbiome-derived metabolite BAs to swiftly establish viral infection and accelerate replication within the intestinal microenvironment.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Doenças dos Suínos , Alphacoronavirus/fisiologia , Animais , Ácidos e Sais Biliares , Cavéolas , Diarreia , Suínos
16.
Opt Express ; 32(11): 19449-19457, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859079

RESUMO

Germanium-on-Silicon (Ge-on-Si) avalanche photodiodes (APDs) are of considerable interest as low intensity light detectors for emerging applications. The Ge absorption layer detects light at wavelengths up to ≈ 1600 nm with the Si acting as an avalanche medium, providing high gain with low excess avalanche noise. Such APDs are typically used in waveguide configurations as growing a sufficiently thick Ge absorbing layer is challenging. Here, we report on a new vertically illuminated pseudo-planar Ge-on-Si APD design utilizing a 2 µm thick Ge absorber and a 1.4 µm thick Si multiplication region. At a wavelength of 1550 nm, 50 µm diameter devices show a responsivity of 0.41 A/W at unity gain, a maximum avalanche gain of 101 and an excess noise factor of 3.1 at a gain of 20. This excess noise factor represents a record low noise for all configurations of Ge-on-Si APDs. These APDs can be inexpensively manufactured and have potential integration in silicon photonic platforms allowing use in a variety of applications requiring high-sensitivity detectors at wavelengths around 1550 nm.

17.
Microb Pathog ; 192: 106714, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801864

RESUMO

Porcine deltacoronavirus (PDCoV), a novel enteropathogenic coronavirus, causes diarrhea mainly in suckling piglets and has the potential to infect humans. Whereas, there is no commercially available vaccine which can effectively prevent this disease. In this study, to ascertain the duration of immune protection of inactivated PDCoV vaccine, suckling piglets were injected subcutaneously with inactivated PDCoV vaccine using a prime/boost strategy at 3 and 17-day-old. Neutralizing antibody assay showed that the level of the inactivated PDCoV group was still ≥1:64 at three months after prime vaccination. The three-month-old pigs were orally challenged with PDCoV strain CZ2020. Two pigs in challenge control group showed mild to severe diarrhea at 10-11 day-post-challenge (DPC), while the inactivated PDCoV group had no diarrhea. High levels of viral shedding, substantial intestinal villus atrophy, and positive straining of viral antigens in ileum were detected in challenge control group, while the pigs in inactivated PDCoV group exhibited significantly reduced viral load, minor intestinal villi damage and negative straining of viral antigens. These results demonstrated that PDCoV was pathogenic against three-month-old pigs and inactivated PDCoV vaccine can provide effective protection in pigs lasting for three months.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus , Diarreia , Doenças dos Suínos , Vacinas de Produtos Inativados , Vacinas Virais , Eliminação de Partículas Virais , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Diarreia/prevenção & controle , Diarreia/imunologia , Diarreia/virologia , Vacinação , Coronavirus/imunologia , Carga Viral , Antígenos Virais/imunologia
18.
Diabetes Metab Res Rev ; 40(1): e3717, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649397

RESUMO

AIMS: To examine the prospective association between fibroblast growth factor 21 (FGF21) and risk of gestational diabetes mellitus (GDM) and the modifying effect of overweight/obesity for this association. METHODS: Serum FGF21 levels were measured at 6-15 weeks of gestation among 332 GDM cases and 664 matched controls. Conditional logistic regression was used to evaluate its association with GDM risk. Interaction analyses on multiplicative and additive scales were conducted to investigate the modifying effect of overweight/obesity. RESULTS: Elevated FGF21 levels were associated with a higher risk of GDM in multivariable models, but the positive association was attenuated after further adjustment for pre-pregnancy body mass index (BMI). A significant multiplicative interaction was noted between FGF21 (both continuous and dichotomous) and pre-pregnancy BMI (p for interaction = 0.049 and 0.03), and the association was only significant in participants with pre-pregnancy BMI ≥24 kg/m2 . When participants were grouped based on pre-pregnancy BMI (≥24 and <24 kg/m2 ) and FGF21 levels (≥median and

Assuntos
Diabetes Gestacional , Fatores de Crescimento de Fibroblastos , Feminino , Humanos , Gravidez , Índice de Massa Corporal , Estudos de Casos e Controles , Obesidade/complicações , Sobrepeso/complicações
19.
BMC Cancer ; 24(1): 177, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317075

RESUMO

BACKGROUND: Neoadjuvant chemoradiotherapy (nCRT) and surgery have been recommended as the standard treatments for locally advanced esophageal squamous cell carcinoma (ESCC). In addition, nodal metastases decreased in frequency and changed in distribution after neoadjuvant therapy. This study aimed to examine the optimal strategy for lymph node dissection (LND) in patients with ESCC who underwent nCRT. METHODS: The hazard ratios (HRs) for overall survival (OS) and disease-free survival (DFS) were calculated using the Cox proportional hazard model. To determine the minimal number of LNDs (n-LNS) or least station of LNDs (e-LNS), the Chow test was used. RESULTS: In total, 333 patients were included. The estimated cut-off values for e-LNS and n-LNS were 9 and 15, respectively. A higher number of e-LNS was significantly associated with improved OS (HR: 0.90; 95% CI 0.84-0.97, P = 0.0075) and DFS (HR: 0.012; 95% CI: 0.84-0.98, P = 0.0074). The e-LNS was a significant prognostic factor in multivariate analyses. The local recurrence rate of 23.1% in high e-LNS is much lower than the results of low e-LNS (13.3%). Comparable morbidity was found in both the e-LNS and n-LND subgroups. CONCLUSION: This cohort study revealed an association between the extent of LND and overall survival, suggesting the therapeutic value of extended lymphadenectomy during esophagectomy. Therefore, more lymph node stations being sampled leads to higher survival rates among patients who receive nCRT, and standard lymphadenectomy of at least 9 stations is strongly recommended.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/cirurgia , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/cirurgia , Carcinoma de Células Escamosas/cirurgia , Estudos de Coortes , Prognóstico , Excisão de Linfonodo , Linfonodos/cirurgia , Linfonodos/patologia , Terapia Neoadjuvante , Esofagectomia , Estadiamento de Neoplasias , Estudos Retrospectivos
20.
Cell Biol Toxicol ; 40(1): 12, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340268

RESUMO

V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA), a novel negative checkpoint regulator, plays an essential role in allergic pulmonary inflammation in mice. Treatment with a VISTA agonistic antibody could significantly improve asthma symptoms. Thus, for allergic asthma treatment, VISTA targeting may be a compelling approach. In this study, we examined the functional mechanism of VISTA in allergic pulmonary inflammation and screened the FDA-approved drugs for VISTA agonists. By using mass cytometry (CyTOF), we found that VISTA deficiency primarily increased lung macrophage infiltration in the OVA-induced asthma model, accompanied by an increased proportion of M1 macrophages (CD11b+F4/80+CD86+) and a decreased proportion of M2 macrophages (CD11b+F4/80+CD206+). Further in vitro studies showed that VISTA deficiency promoted M1 polarization and inhibited M2 polarization of bone marrow-derived macrophages (BMDMs). Importantly, we discovered baloxavir marboxil (BXM) as a VISTA agonist by virtual screening of FDA-approved drugs. The surface plasmon resonance (SPR) assays revealed that BXM (KD = 1.07 µM) as well as its active form, baloxavir acid (BXA) (KD = 0.21 µM), could directly bind to VISTA with high affinity. Notably, treatment with BXM significantly ameliorated asthma symptoms, including less lung inflammation, mucus secretion, and the generation of Th2 cytokines (IL-5, IL-13, and IL-4), which were dramatically attenuated by anti-VISTA monoclonal antibody treatment. BXM administration also reduced the pulmonary infiltration of M1 macrophages and raised M2 macrophages. Collectively, our study indicates that VISTA regulates pulmonary inflammation in allergic asthma by regulating macrophage polarization and baloxavir marboxil, and an old drug might be a new treatment for allergic asthma through targeting VISTA.


Assuntos
Asma , Dibenzotiepinas , Pneumonia , Piridonas , Triazinas , Animais , Camundongos , Asma/tratamento farmacológico , Asma/metabolismo , Morfolinas/farmacologia , Morfolinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA