Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 51(12): 2853-2872, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635154

RESUMO

End-stage Fontan patients with single-ventricle (SV) circulation are often bridged-to-heart transplantation via mechanical circulatory support (MCS). Donor shortage and complexity of the SV physiology demand innovative MCS. In this paper, an out-of-the-box circulation concept, in which the left and right ventricles are switched with each other is introduced as a novel bi-ventricle MCS configuration for the "failing" Fontan patients. In the proposed configuration, the systemic circulation is maintained through a conventional mechanical ventricle assist device (VAD) while the venous circulation is delegated to the native SV. This approach spares the SV and puts it to a new use at the right-side providing the most-needed venous flow pulsatility to the failed Fontan circulation. To analyze its feasibility and performance, eight SV failure modes have been studied via an established multi-compartmental lumped parameter cardiovascular model (LPM). Here the LPM model is experimentally validated against the corresponding pulsatile mock-up flow loop measurements of a representative 15-year-old Fontan patient employing a clinically-approved VAD (Medtronic-HeartWare). The proposed surgical configuration maintained the healthy cardiac index (3-3.5 l/min/m2) and the normal mean systemic arterial pressure levels. For a failed SV with low ejection fraction (EF = 26%), representing a typical systemic Fontan failure, the proposed configuration enabled a ~ 28 mmHg amplitude in the venous/pulmonary waveforms and a 2 mmHg decrease in the central venous pressure (CVP) together with acceptable mean pulmonary artery pressures (17.5 mmHg). The pulmonary vascular resistance (PVR)-SV failure case provided a ~ 5 mmHg drop in the CVP, with venous/pulmonary pulsatility reaching to ~ 22 mmHg. For the high PVR failure case with a healthy SV (EF = 44%) pulmonary hypertension is likely to occur as expected. While this condition is routinely encountered during the heart transplantation and managed through pulmonary vasodilators a need for precise functional assessment of the spared failed-ventricle is recommended if utilized in the PVR failure mode. Comprehensive in vitro and in silico results encourage this novel concept as a low-cost, more physiological alternative to the conventional bi-ventricle MCS pending animal experiments.


Assuntos
Técnica de Fontan , Coração Auxiliar , Animais , Humanos , Adolescente , Ventrículos do Coração , Hemodinâmica/fisiologia , Coração , Resistência Vascular , Modelos Cardiovasculares
2.
Int J Impot Res ; 34(1): 55-63, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33040088

RESUMO

Measurement of blood flow velocity through the cavernosal arteries via penile color Doppler ultrasound (PDUS) is the most common objective method for the assessment of erectile function. However, in some clinical cases, this method needs to be augmented via the invasive intracavernosal pressure (ICP) measurement, which is arguably a more direct index for erectile function. The aim of this study is to develop a lumped parameter model (LPM) of the penile circulation mechanism integrated to a pulsatile, patient-specific, bi-ventricular circulation system to estimate ICP values non-invasively. PDUS data obtained from four random patients with erectile dysfunction are used to develop patient-specific LPMs. Cardiac output is estimated from the body surface area. Systemic pressure is obtained by a sphygmomanometer. Through the appropriate parameter set determined by optimization, patient-specific ICP values are predicted with only using PDUS data and validated by pre- and post-papaverine injection cavernosometry measurements. The developed model predicts the ICP with an average error value of 3 mmHg for both phases. Penile size change during erection is predicted with a ~15% error, according to the clinical size measurements. The developed mathematical model has the potential to be used as an effective non-invasive tool in erectile function evaluation, expanding the existing clinical decision parameters significantly.


Assuntos
Disfunção Erétil , Ereção Peniana , Hemodinâmica , Humanos , Masculino , Papaverina , Ereção Peniana/fisiologia , Pênis/irrigação sanguínea
3.
Eur J Cardiothorac Surg ; 62(1)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35438164

RESUMO

OBJECTIVES: We hypothesize that mechanical assistance of the pulmonary blood flow in a Norwood circulation can increase systemic blood flow and oxygen delivery. The aim of the study was to compare haemodynamics of an unassisted Norwood Blalock-Taussig shunt circulation with a mechanically assisted pulmonary flow-based Norwood circulation, using a lumped parameter computational model. METHODS: A neonatal circulatory lumped parameter model was developed to simulate a Norwood circulation with a 3.5-mm Blalock-Taussig shunt in a 3.5-kg neonate. A roller pump circulatory assist device with an inflow bladder was incorporated into the Norwood circulation to mechanically support the pulmonary circulation. Computer simulations were used to compare the haemodynamics of the assisted and unassisted circulations. Assisted and unassisted models with normal (56%) and reduced ejection fraction (30%) were compared. RESULTS: Compared to the unassisted Norwood circulation, the systemic flow in the assisted Norwood increased by 25% (ejection fraction = 56%) and 41% (ejection fraction = 30%). The central venous pressure decreased by up to 3 mmHg (both ejection fraction = 56% and ejection fraction = 30%) at a maximum pulmonary assist flow of 800 ml/min. Initiation of assisted pulmonary flow increased the arterial oxygen saturation by up to 15% and mixed venous saturation by up to 20%. CONCLUSIONS: This study demonstrates that an assisted pulmonary flow-based Norwood circulation has higher systemic flow and oxygen delivery compared to a standard Norwood Blalock-Taussig shunt circulation.


Assuntos
Procedimento de Blalock-Taussig , Síndrome do Coração Esquerdo Hipoplásico , Procedimentos de Norwood , Ventrículos do Coração/cirurgia , Humanos , Síndrome do Coração Esquerdo Hipoplásico/cirurgia , Recém-Nascido , Oxigênio , Artéria Pulmonar/cirurgia , Circulação Pulmonar , Resultado do Tratamento
4.
Artigo em Inglês | MEDLINE | ID: mdl-31011431

RESUMO

BACKGROUND: Recent studies suggest that delayed cord clamping (DCC) is advantageous for achieving hemodynamic stability and improving oxygenation compared to the immediate cord clamping (ICC) during fetal-to-neonatal transition yet there is no quantitative information on hemodynamics and respiration, particularly for pre-term babies and fetal disease states. Therefore, the objective of this study is to investigate the effects of ICC and DCC on hemodynamics and respiration of the newborn preterm infants in the presence of common vascular pathologies. METHODS: A computational lumped parameter model (LPM) of the placental and respiratory system of a fetus is developed to predict blood pressure, flow rates and oxygen saturation. Cardiovascular system at different gestational ages (GA) are modeled using scaling relations governing fetal growth with the LPM. Intrauterine growth restriction (GR), patent ductus arteriosus (PDA) and respiratory distress syndrome (RDS) were modeled for a newborn at 30 weeks GA. We also formulated a "severity index (SI)" which is a weighted measure of ICC vs. DCC based on the functional parameters derived from our model and existing neonatal disease scoring systems. RESULTS: Our results show that transitional hemodynamics is smoother in DCC compared to ICC for all GAs. Blood volume of the neonate increases by 10% for moderately preterm and term infants (32-40 wks) and by 15% for very and extremely preterm infants (22-30 wks) with DCC compared to ICC. DCC also improves the cardiac output and the arterial blood pressure by 17% in term (36-40 wks), by 18% in moderately preterm (32-36 wks), by 21% in very preterm (28-32 wks) and by 24% in extremely preterm (20-28 wks) births compared to the ICC. A decline in oxygen saturation is observed in ICC received infants by 20% compared to the DCC received ones. At 30 weeks GA, SI were calculated for healthy newborns (1.18), and newborns with GR (1.38), PDA (1.22) and RDS (1.2) templates. CONCLUSION: Our results suggest that DCC provides superior hemodynamics and respiration at birth compared to ICC. This information will help preventing the complications associated with poor oxygenation arising in premature births and pre-screening the more critical babies in terms of their cardiovascular severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA