RESUMO
BACKGROUND: Acute ST-elevation myocardial infarction (STEMI) is associated with a high incidence of complications as well as a considerable hospitalization rate and economic burden. Preliminary evidence suggests that remote ischemic conditioning (RIC) is a promising non-invasive intervention that may effectively and safely reduce myocardial infarct size, subsequent cardiac events and complications, and mortality. However, RIC's cardio-protective effect remains under debate, especially for single timepoint RIC programs. Adequately powered large-scale randomized controlled trials investigating clinical outcomes are thus needed to clarify the role of full disease cycle RIC programs. METHODS: The intelligent "Internet Plus"-based full disease cycle remote ischemic conditioning (i-RIC) trial is a pragmatic, multicenter, randomized controlled, parallel group, clinical trial. The term, intelligent "Internet Plus"-based full disease cycle, refers to smart devices aided automatic and real-time monitoring of remote ischemic pre-, per- or post-conditioning intervention for patients with STEMI undergoing percutaneous coronary intervention (PCI). Based on this perspective, 4700 STEMI patients from five hospitals in China will be randomized to a control and an intervention group. The control group will receive PCI and usual care, including pharmacotherapy, before and after PCI. The intervention group will receive pre-, per-, and post-operative RIC combined with long-term i-RIC over a one-month period in addition. A smartphone application, an automated cuff inflation/deflation device and "Internet Plus"-based administration will be used in the long-term phase. The primary outcome is the combined cardiac death or hospitalization for heart failure rate. Secondary outcomes include clinical and functional outcomes: major adverse cardiac and cerebrovascular events rate, all-cause mortality, myocardial reinfarction rate, readmission rate for heart failure and ischemic stroke rate, unplanned revascularization rate, plasma concentration of myocardial infarction-related key biomarkers, infarct size, cardiac function, cardiopulmonary endurance, health-related quality of life, total hospital length of stay, total medical cost, and compliance with treatment regime. DISCUSSION: The i-RIC trial is designed to test the hypothesis that clinical and functional outcomes can be improved with the i-RIC program in STEMI patients undergoing PCI. The concept of RIC is expected to be enhanced with this intelligent "Internet Plus"-based program focusing on the full disease cycle. If the i-RIC program results in superior improvement in primary and secondary outcomes, it will offer an innovative treatment option for STEMI patients and form the basis of future recommendations. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry ( http://www.chictr.org.cn ): ChiCTR2000031550, 04 April 2020.
Assuntos
Pós-Condicionamento Isquêmico/métodos , Precondicionamento Isquêmico Miocárdico/métodos , Intervenção Coronária Percutânea/métodos , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , China , Humanos , Internet , Aplicativos Móveis , Smartphone , Resultado do TratamentoRESUMO
OBJECTIVE: To investigate the effectiveness of robot-assisted therapy on balance function in stroke survivors. DATA SOURCES: PubMed, the Cochrane Library, Embase and China National Knowledge Infrastructure databases were searched systematically for relevant studies. STUDY SELECTION: Randomized controlled trials reporting robot-assisted therapy on balance function in patients after stroke were included. DATA EXTRACTION: Information on study characteristics, demographics, interventions strategies and outcome measures were extracted by 2 reviewers. DATA SYNTHESIS: A total of 19 randomized trials fulfilled the inclusion criteria and 13 out of 19 were included in the meta-analysis. Analysis revealed that robot-assisted therapy significantly improved balance function assessed by berg balance scale (weighted mean difference (WMD) 3.58, 95% confidence interval (95% CI) 1.89-5.28, p < 0.001) compared with conventional therapy. Secondary analysis indicated that there was a significant difference in balance recovery between the conventional therapy and robot-assisted therapy groups in the acute/subacute stages of stroke (WMD 5.40, 95% CI 3.94-6.86, p < 0.001), while it was not significant in the chronic stages. With exoskeleton devices, the balance recovery in robot-assisted therapy groups was significantly better than in the conventional therapy groups (WMD 3.73, 95% CI 1.83-5.63, p < 0.001). Analysis further revealed that a total training time of more than 10 h can significantly improve balance function (WMD 4.53, 95% CI 2.31-6.75, p < 0.001). No publication bias or small study effects were observed according to the Cochrane Collaboration tool. CONCLUSION: These results suggest that robot-assisted therapy is an effective intervention for improving balance function in stroke survivors.