Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 144: 109272, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061442

RESUMO

Yellow catfish (Pelteobagrus fulvidraco) is an important economic species of freshwater fish, widely distributed in China. Recently, viral diseases of yellow catfish have been identified in Chian (Hubei province), arising more attention to the viral immunity in P. fulvidraco. Tumor necrosis factor (TNF) receptor-associated factor NF-κB activator (TANK)-binding kinase 1 (TBK1) plays an essential role in IFN production and innate antiviral immunity. In the present study, we characterized the P. fulvidraco TBK1 (PfTBK1) and reported its function in interferon response. The full-length open reading frame (ORF) is 2184 bp encoding a protein with 727 amino acids, which is composed of four conserved domains, including KD, ULD, CCD1, and CCD2, similar to TBK1 in other species. Pftbk1 was widely expressed in all detected tissues by qPCR and was not inducible by the spring viremia of carp virus (SVCV), a single-strand RNA virus. In addition, the cellular distribution indicated that PfTBK1 was only located in the cytoplasm. Moreover, PfTBK1 induced strong IFN promoter activities through the Jak-stat pathway, and PfTBK1 interacted with and significantly phosphorylated IFN regulatory factor 3/7 (IRF3/7) in P. fulvidraco, promoting the nuclear translocation of pfIRF3 and PfIRF7, and PfTBK1 upregulated IFN response by PfTBK1-PfIRF3/7 axis. Above all, PfTBK1 triggered IFN response and strongly inhibited the replication of SVCV in EPC cells through induction of IFN downstream IFN-stimulated genes (ISGs). Summarily, this work reveals that PfTBK1 plays a positive regulatory role in IFN induction through the TBK1-IRF3/7 axis, laying a foundation for further exploring the molecular mechanism of the antiviral process in P. fulvidraco.


Assuntos
Peixes-Gato , Interferons , Animais , Interferons/metabolismo , Transdução de Sinais , Fator Regulador 3 de Interferon/genética , Peixes-Gato/genética , Peixes-Gato/metabolismo , Janus Quinases , Fatores de Transcrição STAT , Imunidade Inata/genética
2.
Int J Biol Macromol ; 240: 124384, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054851

RESUMO

Membrane-associated RING-CH-type finger (MARCH) proteins have been reported to regulate type I IFN production during host antiviral innate immunity. The present study reported the zebrafish MARCH family member, MARCH7, as a negative regulator in virus-triggered type I IFN induction via targeting TANK-binding kinase 1 (TBK1) for degradation. As an IFN-stimulated gene (ISG), we discovered that MARCH7 was significantly induced by spring viremia of carp virus (SVCV) or poly(I:C) stimulation. Ectopic expression of MARCH7 reduced the activity of IFN promoter and dampened the cellular antiviral responses triggered by SVCV and grass carp reovirus (GCRV), which concomitantly accelerated the viral replication. Accordingly, the knockdown of MARCH7 by siRNA transfection significantly promoted the transcription of ISG genes and inhibited SVCV replication. Mechanistically, we found that MARCH7 interacted with TBK1 and degraded it via K48-linked ubiquitination. Further characterization of truncated mutants of MARCH7 and TBK1 confirmed that the C-terminal RING of MARCH7 is essential in the MARCH7-mediated degradation of TBK1 and the negative regulation of IFN antiviral response. This study reveals a molecular mechanism by which zebrafish MARCH7 negatively regulates the IFN response by targeting TBK1 for protein degradation, providing new insights into the essential role of MARCH7 in antiviral innate immunity.


Assuntos
Carpas , Rhabdoviridae , Animais , Peixe-Zebra , Rhabdoviridae/fisiologia , Imunidade Inata/genética , Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA