Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Cogn ; 169: 106001, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235929

RESUMO

We systematically investigated the link between trait mindfulness scores and functional connectivity (FC) features or behavioral data, to emphasize the importance of the reliability of self-report mindfulness scores. Sixty healthy young male participants underwent two functional MRI runs with three mindfulness or mind-wandering task blocks with an N-back task (NBT) block. The data from 49 participants (age: 23.3 ± 2.8) for whom two sets of the self-reported Mindfulness Attention Awareness Scale (MAAS) and NBT performance were available were analyzed. We divided participants into two groups based on the consistency level of their MAAS scores (i.e., a "consistent" and an "inconsistent" group). Then, the association between the MAAS scores and FC features or NBT performance was investigated using linear regression analysis with p-value correction and bootstrapping. Meaningful associations (a) between MAAS and NBT accuracy (slope = 0.41, CI = [0.10, 0.73], corrected p < 0.05), (b) between MAAS and the FC edges in the frontoparietal network, and (c) between the FC edges and NBT performance were only observed in the consistent group (n = 26). Our findings demonstrate the importance of appropriate screening mechanisms for self-report-based dispositional mindfulness scores when trait mindfulness scores are combined with neuronal features and behavioral data.


Assuntos
Memória de Curto Prazo , Atenção Plena , Humanos , Masculino , Adulto Jovem , Adulto , Autorrelato , Reprodutibilidade dos Testes , Atenção/fisiologia
2.
BMC Anesthesiol ; 21(1): 158, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020595

RESUMO

BACKGROUND: High-intensity ultrasound has been used to induce acoustic cavitation in the skin and subsequently enhances skin permeability to deliver hydrophobic topical medications including lidocaine. In contrast, instead of changing skin permeability, pulsed application of low-intensity focused ultrasound (FUS) has shown to non-invasively and temporarily disrupt drug-plasma protein binding, thus has potential to enhance the anesthetic effects of hydrophilic lidocaine hydrochloride through unbinding it from serum/interstitial α1-acid glycoprotein (AAG). METHODS: FUS, operating at fundamental frequency of 500 kHz, was applied pulse-mode (55-ms pulse duration, 4-Hz pulse repetition frequency) at a spatial-peak pulse-average intensity of 5 W/cm2. In vitro equilibrium dialysis was performed to measure the unbound concentration of lidocaine (lidocaine hydrochloride) from dialysis cassettes, one located at the sonication focus and the other outside the sonication path, all immersed in phosphate-buffered saline solution containing both lidocaine (10 µg/mL) and human AAG (5 mg/mL). In subsequent animal experiments (Sprague-Dawley rats, n = 10), somatosensory evoked potential (SSEP), elicited by electrical stimulations to the unilateral hind leg, was measured under three experimental conditions-applications of FUS to the unilateral thigh area at the site of administered topical lidocaine, FUS only, and lidocaine only. Skin temperature was measured before and after sonication. Passive cavitation detection was also performed during sonication to evaluate the presence of FUS-induced cavitation. RESULTS: Sonication increased the unbound lidocaine concentration (8.7 ± 3.3 %) from the dialysis cassette, compared to that measured outside the sonication path (P < 0.001). Application of FUS alone did not alter the SSEP while administration of lidocaine reduced its P23 component (i.e., a positive peak at 23 ms latency). The FUS combined with lidocaine resulted in a further reduction of the P23 component (in a range of 21.8 - 23.4 ms after the electrical stimulations; F(2,27) = 3.2 - 4.0, P < 0.05), indicative of the enhanced anesthetic effect of the lidocaine. Administration of FUS neither induced cavitation nor altered skin conductance or temperature, suggesting that skin permeability was unaffected. CONCLUSIONS: Unbinding lidocaine from the plasma proteins by exposure to non-thermal low-intensity ultrasound is attributed as the main mechanism behind the observation.


Assuntos
Anestésicos Locais/farmacologia , Tratamento por Ondas de Choque Extracorpóreas/métodos , Lidocaína/farmacologia , Pele/efeitos dos fármacos , Administração Tópica , Anestésicos Locais/administração & dosagem , Animais , Lidocaína/administração & dosagem , Modelos Animais , Ratos , Ratos Sprague-Dawley
3.
Neuroimage ; 195: 409-432, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30953836

RESUMO

The triple networks, namely the default-mode network (DMN), the central executive network (CEN), and the salience network (SN), play crucial roles in disorders of the brain, as well as in basic neuroscientific processes such as mindfulness. However, currently, there is no consensus on the underlying functional features of the triple networks associated with mindfulness. In this study, we tested the hypothesis that (a) the partial regression coefficient (i.e., slope): from the SN to the DMN, mediated by the CEN, would be one of the potential mindfulness features in the real-time functional magnetic resonance imaging (rtfMRI) neurofeedback (NF) setting, and (b) this slope level may be enhanced by rtfMRI-NF training. Sixty healthy mindfulness-naïve males participated in an MRI session consisting of two non-rtfMRI-runs, followed by two rtfMRI-NF runs and one transfer run. Once the regions-of-interest of each of the triple networks were defined using the non-rtfMRI-runs, the slope level was calculated by mediation analysis and used as neurofeedback information, in the form of a thermometer bar, to assist with participant mindfulness during the rtfMRI-NF runs. The participants were asked to increase the level of the thermometer bar while deploying a mindfulness strategy, which consisted of focusing attention on the physical sensations of breathing. rtfMRI-NF training was conducted as part of a randomized controlled trial design, in which participants were randomly assigned to either an experimental group or a control group. The participants in the experimental group received contingent neurofeedback information, which was obtained from their own brain signals, whereas the participants in the control group received non-contingent neurofeedback information that originated from matched participants in the experimental group. Our results indicated that the slope level from the SN to the DMN, mediated by the CEN, was associated with mindfulness score (rtfMRI-NF runs: r = 0.53, p = 0.007; p-value was corrected from 10,000 random permutations) and with task-performance feedback score (rtfMRI-NF run: r = 0.61, p = 0.001) in the experimental group only. In addition, during the rtfMRI-NF runs the level of the partial regression coefficient feature was substantially increased in the experimental group compared to the control group (p < 0.05 from the paired t-test; the p-value was corrected from 10,000 random permutations). To the best of our knowledge, this is the first study to demonstrate a partial regression coefficient feature of mindfulness in the rtfMRI-NF setting obtained by triple network mediation analysis, as well as the possibility of enhancement of the partial regression coefficient feature by rtfMRI-NF training.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Atenção Plena , Neurorretroalimentação/métodos , Adulto , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino
4.
BMC Neurosci ; 19(1): 57, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231861

RESUMO

BACKGROUND: Low-intensity transcranial focused ultrasound (tFUS) has emerged as a new non-invasive modality of brain stimulation with the potential for high spatial selectivity and penetration depth. Anesthesia is typically applied in animal-based tFUS brain stimulation models; however, the type and depth of anesthesia are known to introduce variability in responsiveness to the stimulation. Therefore, the ability to conduct sonication experiments on awake small animals, such as rats, is warranted to avoid confounding effects of anesthesia. RESULTS: We developed a miniature tFUS headgear, operating at 600 kHz, which can be attached to the skull of Sprague-Dawley rats through an implanted pedestal, allowing the ultrasound to be transcranially delivered to motor cortical areas of unanesthetized freely-moving rats. Video recordings were obtained to monitor physical responses from the rat during acoustic brain stimulation. The stimulation elicited body movements from various areas, such as the tail, limbs, and whiskers. Movement of the head, including chewing behavior, was also observed. When compared to the light ketamine/xylazine and isoflurane anesthetic conditions, the response rate increased while the latency to stimulation decreased in the awake condition. The individual variability in response rates was smaller during the awake condition compared to the anesthetic conditions. Our analysis of latency distribution of responses also suggested possible presence of acoustic startle responses mixed with stimulation-related physical movement. Post-tFUS monitoring of animal behaviors and histological analysis performed on the brain did not reveal any abnormalities after the repeated tFUS sessions. CONCLUSIONS: The wearable miniature tFUS configuration allowed for the stimulation of motor cortical areas in rats and elicited sonication-related movements under both awake and anesthetized conditions. The awake condition yielded diverse physical responses compared to those reported in existing literatures. The ability to conduct an experiment in freely-moving awake animals can be gainfully used to investigate the effects of acoustic neuromodulation free from the confounding effects of anesthesia, thus, may serve as a translational platform to large animals and humans.


Assuntos
Atividade Motora/fisiologia , Córtex Motor/fisiologia , Terapia por Ultrassom/instrumentação , Terapia por Ultrassom/métodos , Anestesia , Animais , Desenho de Equipamento , Masculino , Miniaturização , Córtex Motor/citologia , Próteses e Implantes , Ratos Sprague-Dawley , Crânio/cirurgia , Vigília
5.
Exp Dermatol ; 27(5): 453-459, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28453913

RESUMO

This study reports a three-dimensional (3D) bioprinting technique that is capable of producing a full-thickness skin model containing pigmentation. Multiple layers of fibroblast (FB)-containing collagen hydrogel precursor were printed and crosslinked through neutralization using sodium bicarbonate, constituting the dermal layer. Melanocytes (MCs) and keratinocytes (KCs) were sequentially printed on top of the dermal layer to induce skin pigmentation upon subsequent air-liquid interface culture. Histological analysis was performed not only to confirm the formation of distinct skin layers, but also to identify the presence of pigmentation. The bioprinted skin structure showed the dermal and epidermal layers as well as the terminal differentiation of the KC that formed the stratum corneum. Moreover, the MC-containing epidermal layer showed freckle-like pigmentations at the dermal-epidermal junction, without the use of external ultraviolet light or chemical stimuli. The presented method offers the capability of producing engineered ephelides in biomimetic skin, thus rendering 3D bioprinting techniques as productive on-demand options for the creation of skin models available for therapeutic or research use.


Assuntos
Bioimpressão , Melanócitos , Impressão Tridimensional , Pigmentação da Pele , Pele , Células Cultivadas , Humanos
6.
BMC Neurosci ; 17(1): 68, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27784293

RESUMO

BACKGROUND: Transcranial focused ultrasound (FUS) is gaining momentum as a novel non-invasive brain stimulation method, with promising potential for superior spatial resolution and depth penetration compared to transcranial magnetic stimulation or transcranial direct current stimulation. We examined the presence of tactile sensations elicited by FUS stimulation of two separate brain regions in humans-the primary (SI) and secondary (SII) somatosensory areas of the hand, as guided by individual-specific functional magnetic resonance imaging data. RESULTS: Under image-guidance, acoustic stimulations were delivered to the SI and SII areas either separately or simultaneously. The SII areas were divided into sub-regions that are activated by four types of external tactile sensations to the palmar side of the right hand-vibrotactile, pressure, warmth, and coolness. Across the stimulation conditions (SI only, SII only, SI and SII simultaneously), participants reported various types of tactile sensations that arose from the hand contralateral to the stimulation, such as the palm/back of the hand or as single/neighboring fingers. The type of tactile sensations did not match the sensations that are associated with specific sub-regions in the SII. The neuro-stimulatory effects of FUS were transient and reversible, and the procedure did not cause any adverse changes or discomforts in the subject's mental/physical status. CONCLUSIONS: The use of multiple FUS transducers allowed for simultaneous stimulation of the SI/SII in the same hemisphere and elicited various tactile sensations in the absence of any external sensory stimuli. Stimulation of the SII area alone could also induce perception of tactile sensations. The ability to stimulate multiple brain areas in a spatially restricted fashion can be used to study causal relationships between regional brain activities and their cognitive/behavioral outcomes.


Assuntos
Estimulação Acústica/métodos , Ecoencefalografia/métodos , Córtex Somatossensorial/fisiologia , Percepção do Tato/fisiologia , Estimulação Acústica/instrumentação , Adulto , Braço/fisiologia , Ecoencefalografia/instrumentação , Desenho de Equipamento , Feminino , Seguimentos , Lateralidade Funcional , Humanos , Perna (Membro)/fisiologia , Imageamento por Ressonância Magnética , Imagem Multimodal , Córtex Somatossensorial/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto Jovem
7.
J Cogn Neurosci ; 27(8): 1552-72, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25761006

RESUMO

Real-time fMRI (rtfMRI) neurofeedback (NF) facilitates volitional control over brain activity and the modulation of associated mental functions. The NF signals of traditional rtfMRI-NF studies predominantly reflect neuronal activity within ROIs. In this study, we describe a novel rtfMRI-NF approach that includes a functional connectivity (FC) component in the NF signal (FC-added rtfMRI-NF). We estimated the efficacy of the FC-added rtfMRI-NF method by applying it to nicotine-dependent heavy smokers in an effort to reduce cigarette craving. ACC and medial pFC as well as the posterior cingulate cortex and precuneus are associated with cigarette craving and were chosen as ROIs. Fourteen heavy smokers were randomly assigned to receive one of two types of NF: traditional activity-based rtfMRI-NF or FC-added rtfMRI-NF. Participants received rtfMRI-NF training during two separate visits after overnight smoking cessation, and cigarette craving score was assessed. The FC-added rtfMRI-NF resulted in greater neuronal activity and increased FC between the targeted ROIs than the traditional activity-based rtfMRI-NF and resulted in lower craving score. In the FC-added rtfMRI-NF condition, the average of neuronal activity and FC was tightly associated with craving score (Bonferroni-corrected p = .028). However, in the activity-based rtfMRI-NF condition, no association was detected (uncorrected p > .081). Non-rtfMRI data analysis also showed enhanced neuronal activity and FC with FC-added NF than with activity-based NF. These results demonstrate that FC-added rtfMRI-NF facilitates greater volitional control over brain activity and connectivity and greater modulation of mental function than activity-based rtfMRI-NF.


Assuntos
Encéfalo/fisiopatologia , Fissura/fisiologia , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Tabagismo/fisiopatologia , Tabagismo/terapia , Adulto , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Humanos , Masculino , Percepção de Movimento/fisiologia , Oxigênio/sangue , Índice de Gravidade de Doença , Abandono do Hábito de Fumar/métodos , Produtos do Tabaco , Gravação em Vídeo
8.
Neuroimage ; 104: 437-51, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25284302

RESUMO

Electroencephalography (EEG) data simultaneously acquired with functional magnetic resonance imaging (fMRI) data are preprocessed to remove gradient artifacts (GAs) and ballistocardiographic artifacts (BCAs). Nonetheless, these data, especially in the gamma frequency range, can be contaminated by residual artifacts produced by mechanical vibrations in the MRI system, in particular the cryogenic pump that compresses and transports the helium that chills the magnet (the helium-pump). However, few options are available for the removal of helium-pump artifacts. In this study, we propose a recursive approach of EEG-segment-based principal component analysis (rsPCA) that enables the removal of these helium-pump artifacts. Using the rsPCA method, feature vectors representing helium-pump artifacts were successfully extracted as eigenvectors, and the reconstructed signals of the feature vectors were subsequently removed. A test using simultaneous EEG-fMRI data acquired from left-hand (LH) and right-hand (RH) clenching tasks performed by volunteers found that the proposed rsPCA method substantially reduced helium-pump artifacts in the EEG data and significantly enhanced task-related gamma band activity levels (p=0.0038 and 0.0363 for LH and RH tasks, respectively) in EEG data that have had GAs and BCAs removed. The spatial patterns of the fMRI data were estimated using a hemodynamic response function (HRF) modeled from the estimated gamma band activity in a general linear model (GLM) framework. Active voxel clusters were identified in the post-/pre-central gyri of motor area, only from the rsPCA method (uncorrected p<0.001 for both LH/RH tasks). In addition, the superior temporal pole areas were consistently observed (uncorrected p<0.001 for the LH task and uncorrected p<0.05 for the RH task) in the spatial patterns of the HRF model for gamma band activity when the task paradigm and movement were also included in the GLM.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Análise de Componente Principal/métodos , Adulto , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino
9.
BMC Vet Res ; 11: 262, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467856

RESUMO

BACKGROUND: An ovine model can cast great insight in translational neuroscientific research due to its large brain volume and distinct regional neuroanatomical structures. The present study examined the applicability of brain functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to sheep using a clinical MR scanner (3 tesla) with a head coil. The blood-oxygenation-level-dependent (BOLD) fMRI was performed on anesthetized sheep during the block-based presentation of external tactile and visual stimuli using gradient echo-planar-imaging (EPI) sequence. RESULTS: The individual as well as group-based data processing subsequently showed activation in the eloquent sensorimotor and visual areas. DTI was acquired using 26 differential magnetic gradient directions to derive directional fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values from the brain. White matter tractography was also applied to reveal the macrostructure of the corticospinal tracts and optic radiations. CONCLUSIONS: Utilization of fMRI and DTI along with anatomical MRI in the sheep brain could shed light on a broader use of an ovine model in the field of translational neuroscientific research targeting the brain.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/veterinária , Neuroimagem Funcional/veterinária , Ovinos/anatomia & histologia , Animais , Encéfalo/fisiologia , Feminino , Estimulação Luminosa , Estimulação Física , Ovinos/fisiologia , Percepção do Tato/fisiologia , Percepção Visual/fisiologia
10.
IEEE J Biomed Health Inform ; 28(7): 4024-4035, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625763

RESUMO

Transcranial focused ultrasound (tFUS) has emerged as a new mode of non-invasive brain stimulation (NIBS), with its exquisite spatial precision and capacity to reach the deep regions of the brain. The placement of the acoustic focus onto the desired part of the brain is critical for successful tFUS procedures; however, acoustic wave propagation is severely affected by the skull, distorting the focal location/shape and the pressure level. High-resolution (HR) numerical simulation allows for monitoring of acoustic pressure within the skull but with a considerable computational burden. To address this challenge, we employed a 4× super-resolution (SR) Swin Transformer method to improve the precision of estimating tFUS acoustic pressure field, targeting operator-defined brain areas. The training datasets were obtained through numerical simulations at both ultra-low (2.0 [Formula: see text]) and high (0.5 [Formula: see text]) resolutions, conducted on in vivo CT images of 12 human skulls. Our multivariable datasets, which incorporate physical properties of the acoustic pressure field, wave velocity, and skull CT images, were utilized to train three-dimensional SR models. We found that our method yielded 87.99 ± 4.28% accuracy in terms of focal volume conformity under foreseen skull data, and accuracy of 82.32 ± 5.83% for unforeseen skulls, respectively. Moreover, a significant improvement of 99.4% in computational efficiency compared to the traditional 0.5 [Formula: see text] HR numerical simulation was shown. The presented technique, when adopted in guiding the placement of the FUS transducer to engage specific brain targets, holds great potential in enhancing the safety and effectiveness of tFUS therapy.


Assuntos
Encéfalo , Simulação por Computador , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Crânio/diagnóstico por imagem , Crânio/fisiologia , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Terapia por Ultrassom/métodos
11.
Neuroreport ; 35(11): 729-733, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38829951

RESUMO

OBJECTIVE: Solute transport in the brain is essential for maintaining cerebral homeostasis. Recent studies have shown that neuronal activity enhances the transport of cerebrospinal fluid solutes, but its impact on interstitial solute transport has not been established. In this study, we investigated whether neuronal activity affects the transport of interstitial solutes. METHODS: Fluorescent Texas Red ovalbumin was injected intracortically into the unilateral sensorimotor area of the Sprague-Dawley rats. Regional neuronal activity around the injection site was elicited by transdermal electrical stimulation of a corresponding forelimb for 90 min ( n  = 6). The control group of rats ( n  = 6) did not receive any electrical stimulation. Subsequently, the spatial distributions of the tracer over the cortical surface and from the brain sections were imaged and compared between two groups. The ovalbumin fluorescence from the cervical lymph nodes was also compared between the groups to evaluate the effect of neuronal activity on solute clearance from the brain. RESULTS: Tracer distribution over the brain surface/sections revealed a significantly higher uptake of ovalbumin in the hemisphere ipsilateral to the injection among the stimulated animals compared to the unstimulated group. This difference, however, was not seen in the hemisphere contralateral to injection. A trace amount of ovalbumin in the lymph nodes was equivalent between the groups, which indicated a considerable time needed for interstitial solutes to be drained from the brain. CONCLUSION: The results suggest that neuronal activity enhances interstitial solute transport, calling for further examination of ultimate routes and mechanisms for brain solute clearance.


Assuntos
Ratos Sprague-Dawley , Animais , Masculino , Ratos , Ovalbumina , Estimulação Elétrica/métodos , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/fisiologia , Transporte Biológico/fisiologia , Linfonodos/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Xantenos
12.
Ultrasonography ; 43(1): 35-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029736

RESUMO

PURPOSE: Acoustic streaming induced by applying transcranial focused ultrasound (FUS) promotes localized advective solute transport in the brain and has recently garnered research interest for drug delivery and enhancement of brain waste clearance. The acoustic streaming behavior in brain tissue is difficult to model numerically and thus warrants an in vitro examination of the effects of using different sonication parameters, in terms of frequency, intensity, and pulse duration (PD). METHODS: Melamine and polyvinyl alcohol (PVA) foams were used to mimic the porous brain tissue, which contains leptomeningeal fenestrations and perivascular space, while agar hydrogel was used to emulate denser neuropil. FUS was delivered to these media, which were immersed in a phosphate-buffered saline containing toluidine blue O dye, across various frequencies (400, 500, and 600 kHz; applicable to transcranial delivery) in a pulsed mode at two different spatialpeak pulse-average intensities (3 and 4 W/cm2). RESULTS: Image analysis showed that the use of 400 kHz yielded the greatest dye infiltration in melamine foam, while sonication had no impact on infiltration in the agar hydrogel due to the dominance of diffusional transport. Using a fixed spatial-peak temporal-average intensity of 0.4 W/cm2 at 400 kHz, a PD of 75 ms resulted in the greatest infiltration depth in both melamine and PVA foams among the tested range (50-150 ms). CONCLUSION: These findings suggest the existence of a specific frequency and PD that induce greater enhancement of solute/fluid movement, which may contribute to eventual in vivo applications in promoting waste clearance from the brain.

13.
Psychiatry Investig ; 21(8): 885-896, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39111747

RESUMO

OBJECTIVE: Low-intensity transcranial focused ultrasound (tFUS) has emerged as a promising non-invasive brain stimulation modality with high spatial selectivity and the ability to reach deep brain areas. The present study aimed to investigate the safety and effectiveness of low-intensity tFUS in treating major depressive disorder. METHODS: Participants were recruited in an outpatient clinic and randomly assigned to either the verum tFUS or sham stimulation group. The intervention group received six sessions of tFUS stimulation to the left dorsolateral prefrontal cortex over two weeks. Neuropsychological assessments were conducted before and after the sessions. Resting-state functional magnetic resonance imaging (rsfMRI) was also performed to evaluate changes in functional connectivity (FC). The primary outcome measure was the change in depressive symptoms, assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS). RESULTS: The tFUS stimulation sessions were well tolerated without any undesirable side effects. The analysis revealed a significant main effect of session sequence on the MADRS scores and significant interactions between the session sequences and groups. The rsfMRI analysis showed a higher FC correlation between the right superior part of the subgenual anterior cingulate cortex (sgACC) and several other brain regions in the verum group compared with the sham group. CONCLUSION: Our results reveal that tFUS stimulation clinically improved MADRS scores with network-level modulation of a sgACC subregion. This randomized, sham-controlled clinical trial, the first study of its kind, demonstrated the safety and probable efficacy of tFUS stimulation for the treatment of depression.

14.
Sci Rep ; 13(1): 17002, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813871

RESUMO

Cerebrospinal fluid (CSF) is crucial for maintaining neuronal homeostasis, providing nutrition, and removing metabolic waste from the brain. However, the relationship between neuronal activity and CSF solute transport remains poorly understood. To investigate the effect of regional neuronal activity on CSF solute transport, Sprague-Dawley rats (all male, n = 30) under anesthesia received an intracisternal injection of a fluorescent tracer (Texas Red ovalbumin) and were subjected to unilateral electrical stimulation of a forelimb. Two groups (n = 10 each) underwent two different types of stimulation protocols for 90 min, one including intermittent 7.5-s resting periods and the other without rest. The control group was not stimulated. Compared to the control, the stimulation without resting periods led to increased transport across most of the cortical areas, including the ventricles. The group that received intermittent stimulation showed an elevated level of solute uptake in limited areas, i.e., near/within the ventricles and on the ventral brain surface. Interhemispheric differences in CSF solute transport were also found in the cortical regions that overlap with the forelimb sensorimotor area. These findings suggest that neuronal activity may trigger local and brain-wide increases in CSF solute transport, contributing to waste clearance.


Assuntos
Encéfalo , Roedores , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Encéfalo/metabolismo , Homeostase/fisiologia , Transporte Biológico/fisiologia , Líquido Cefalorraquidiano/metabolismo
15.
Comput Methods Programs Biomed ; 237: 107591, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182263

RESUMO

BACKGROUND AND OBJECTIVE: Transcranial focused ultrasound (tFUS) has emerged as a new non-invasive brain stimulation (NIBS) modality, with its exquisite ability to reach deep brain areas at a high spatial resolution. Accurate placement of an acoustic focus to a target region of the brain is crucial during tFUS treatment; however, the distortion of acoustic wave propagation through the intact skull casts challenges. High-resolution numerical simulation allows for monitoring of the acoustic pressure field in the cranium but also demands extensive computational loads. In this study, we adopt a super-resolution residual network technique based on a deep convolution to enhance the prediction quality of the FUS acoustic pressure field in the targeted brain regions. METHODS: The training dataset was acquired by numerical simulations performed at low-(1.0 mm) and high-resolutions (0.5mm) on three ex vivo human calvariae. Five different super-resolution (SR) network models were trained by using a multivariable dataset in 3D, which incorporated information on the acoustic pressure field, wave velocity, and localized skull computed tomography (CT) images. RESULTS: The accuracy of 80.87±4.50% in predicting the focal volume with a substantial improvement of 86.91% in computational cost compared to the conventional high-resolution numerical simulation was achieved. The results suggest that the method can greatly reduce the simulation time without sacrificing accuracy and improve the accuracy further with the use of additional inputs. CONCLUSIONS: In this research, we developed multivariable-incorporating SR neural networks for transcranial focused ultrasound simulation. Our super-resolution technique may contribute to promoting the safety and efficacy of tFUS-mediated NIBS by providing on-site feedback information on the intracranial pressure field to the operator.


Assuntos
Encéfalo , Crânio , Humanos , Encéfalo/diagnóstico por imagem , Crânio/diagnóstico por imagem , Simulação por Computador , Acústica , Cabeça
16.
PLoS One ; 18(7): e0288654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478086

RESUMO

The effects of transcranial focused ultrasound (FUS) stimulation of the primary somatosensory cortex and its thalamic projection (i.e., ventral posterolateral nucleus) on the generation of electroencephalographic (EEG) responses were evaluated in healthy human volunteers. Stimulation of the unilateral somatosensory circuits corresponding to the non-dominant hand generated EEG evoked potentials across all participants; however, not all perceived stimulation-mediated tactile sensations of the hand. These FUS-evoked EEG potentials (FEP) were observed from both brain hemispheres and shared similarities with somatosensory evoked potentials (SSEP) from median nerve stimulation. Use of a 0.5 ms pulse duration (PD) sonication given at 70% duty cycle, compared to the use of 1 and 2 ms PD, elicited more distinctive FEP peak features from the hemisphere ipsilateral to sonication. Although several participants reported hearing tones associated with FUS stimulation, the observed FEP were not likely to be confounded by the auditory sensation based on a separate measurement of auditory evoked potentials (AEP) to tonal stimulation (mimicking the same repetition frequency as the FUS stimulation). Off-line changes in resting-state functional connectivity (FC) associated with thalamic stimulation revealed that the FUS stimulation enhanced connectivity in a network of sensorimotor and sensory integration areas, which lasted for at least more than an hour. Clinical neurological evaluations, EEG, and neuroanatomical MRI did not reveal any adverse or unintended effects of sonication, attesting its safety. These results suggest that FUS stimulation may induce long-term neuroplasticity in humans, indicating its neurotherapeutic potential for various neurological and neuropsychiatric conditions.


Assuntos
Mãos , Sensação , Humanos , Sensação/fisiologia , Potenciais Evocados Auditivos , Potenciais Somatossensoriais Evocados/fisiologia , Sonicação/métodos , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia
17.
Sci Rep ; 13(1): 4128, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914775

RESUMO

The efficacy of many anti-epileptic drugs, including phenytoin (PHT), is reduced by plasma protein binding (PPB) that sequesters therapeutically active drug molecules within the bloodstream. An increase in systemic dose elevates the risk of drug side effects, which demands an alternative technique to increase the unbound concentration of PHT in a region-specific manner. We present a low-intensity focused ultrasound (FUS) technique that locally enhances the efficacy of PHT by transiently disrupting its binding to albumin. We first identified the acoustic parameters that yielded the highest PHT unbinding from albumin among evaluated parameter sets using equilibrium dialysis. Then, rats with chronic mesial temporal lobe epilepsy (mTLE) received four sessions of PHT injection, each followed by 30 min of FUS delivered to the ictal region, across 2 weeks. Two additional groups of mTLE rats underwent the same procedure, but without receiving PHT or FUS. Assessment of electrographic seizure activities revealed that FUS accompanying administration of PHT effectively reduced the number and mean duration of ictal events compared to other conditions, without damaging brain tissue or the blood-brain barrier. Our results demonstrated that the FUS technique enhanced the anti-epileptic efficacy of PHT in a chronic mTLE rodent model by region-specific PPB disruption.


Assuntos
Epilepsia do Lobo Temporal , Fenitoína , Animais , Ratos , Anticonvulsivantes/uso terapêutico , Proteínas Sanguíneas/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Fenitoína/farmacologia , Fenitoína/uso terapêutico
18.
Anticancer Res ; 43(11): 4793-4800, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37909989

RESUMO

BACKGROUND/AIM: We examined the effect of low-intensity focused ultrasound (FUS) on unbinding cisplatin from plasma proteins and enhancing its chemotherapeutic efficacy using a mouse model of xenograft human cervical cancer. MATERIALS AND METHODS: FUS, operating in a pulsed mode, was applied to a dialysis cassette immersed in a normal saline bath containing both bovine serum albumin (BSA) and cisplatin, and the unbound level of cisplatin diffused into the cassette was measured. To assess the in vivo efficacy of the technique, athymic nu/nu mice were inoculated with human cervical cancer cells under four different combinatory conditions, with and without the administration of cisplatin and FUS. FUS was delivered to the tumor mass for 1 h across four separate sessions spanning a period of 10 days, following the intraperitoneal injection of cisplatin. RESULTS: In vitro equilibrium dialysis revealed that non-thermal application of FUS increased the concentration of unbound cisplatin compared to cassettes that were not exposed to sonication, suggesting successful unbinding. Assessment of tumor growth in vivo showed that FUS following cisplatin administration resulted in a significant reduction in tumor growth, whereas the administration of cisplatin alone exhibited plateau growth. Without administration of cisplatin, equivalent rates of aggressive tumor growth were observed regardless of the application of FUS. CONCLUSION: Pulsed application of FUS can unbind cisplatin from albumin and enhance its tumoricidal effects in cervical cancer. Further assessment of intratumoral/systemic cisplatin concentration is required to quantify its selective delivery to the tumor.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Xenoenxertos , Cisplatino/farmacologia , Transplante Heterólogo , Acústica
19.
Sci Rep ; 13(1): 12339, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524783

RESUMO

Transport of interstitial fluid and solutes plays a critical role in clearing metabolic waste from the brain. Transcranial application of focused ultrasound (FUS) has been shown to promote localized cerebrospinal fluid solute uptake into the brain parenchyma; however, its effects on the transport and clearance of interstitial solutes remain unknown. We demonstrate that pulsed application of low-intensity FUS to the rat brain enhances the transport of intracortically injected fluorescent tracers (ovalbumin and high molecular-weight dextran), yielding greater parenchymal tracer volume distribution compared to the unsonicated control group (ovalbumin by 40.1% and dextran by 34.6%). Furthermore, FUS promoted the drainage of injected interstitial ovalbumin to both superficial and deep cervical lymph nodes (cLNs) ipsilateral to sonication, with 78.3% higher drainage observed in the superficial cLNs compared to the non-sonicated hemisphere. The application of FUS increased the level of solute transport visible from the dorsal brain surface, with ~ 43% greater area and ~ 19% higher fluorescence intensity than the unsonicated group, especially in the pial surface ipsilateral to sonication. The sonication did not elicit tissue-level neuronal excitation, measured by an electroencephalogram, nor did it alter the molecular weight of the tracers. These findings suggest that nonthermal transcranial FUS can enhance advective transport of interstitial solutes and their subsequent removal in a completely non-invasive fashion, offering its potential non-pharmacological utility in facilitating clearance of waste from the brain.


Assuntos
Encéfalo , Dextranos , Ratos , Animais , Ratos Sprague-Dawley , Ovalbumina/metabolismo , Dextranos/metabolismo , Encéfalo/fisiologia , Sonicação
20.
Brain Stimul ; 16(1): 48-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36549480

RESUMO

Transcranial ultrasound stimulation (TUS) has been shown to be a safe and effective technique for non-invasive superficial and deep brain stimulation. Safe and efficient translation to humans requires estimating the acoustic attenuation of the human skull. Nevertheless, there are no international guidelines for estimating the impact of the skull bone. A tissue independent, arbitrary derating was developed by the U.S. Food and Drug Administration to take into account tissue absorption (0.3 dB/cm-MHz) for diagnostic ultrasound. However, for the case of transcranial ultrasound imaging, the FDA model does not take into account the insertion loss induced by the skull bone, nor the absorption by brain tissue. Therefore, the estimated absorption is overly conservative which could potentially limit TUS applications if the same guidelines were to be adopted. Here we propose a three-layer model including bone absorption to calculate the maximum pressure transmission through the human skull for frequencies ranging between 100 kHz and 1.5 MHz. The calculated pressure transmission decreases with the frequency and the thickness of the bone, with peaks for each thickness corresponding to a multiple of half the wavelength. The 95th percentile maximum transmission was calculated over the accessible surface of 20 human skulls for 12 typical diameters of the ultrasound beam on the skull surface, and varies between 40% and 78%. To facilitate the safe adjustment of the acoustic pressure for short ultrasound pulses, such as transcranial imaging or transcranial ultrasound stimulation, a table summarizes the maximum pressure transmission for each ultrasound beam diameter and each frequency.


Assuntos
Encéfalo , Crânio , Humanos , Crânio/diagnóstico por imagem , Ultrassonografia , Acústica , Cabeça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA