Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Small ; : e2400374, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566523

RESUMO

Highly efficient water splitting electrocatalyst for producing hydrogen as a renewable energy source offers potential to achieve net-zero. However, it has significant challenges in using transition metal electrocatalysts as alternatives to noble metals due to their low efficiency and durability, furthermore, the reliance on electricity generation for electrocatalysts from fossil fuels leads to unavoidable carbon emissions. Here, a highly efficient self-powered water splitting system integrated is designed with triboelectric nanogenerator (TENG) and Ni3FeN@Fe24N10 catalyst with improved catalytic activity and durability. First, the durability of the Ni3FeN catalyst is improved by forming N, P carbon shell using melamine, polyetherimide, and phytic acid. The catalyst activity is improved by generating Fe24N10 in the carbon shell through the Kirkendall effect. The synthesized Ni3FeN@Fe24N10 catalyst exhibited excellent bifunctional catalytic activity (ηOER = 261.8 mV and ηHER = 151.8 mV) and remarkable stability (91.7% in OER and 90.5% in HER) in 1 m KOH. Furthermore, to achieve ecofriendly electricity generation, a rotation-mode TENG that sustainably generate high-performance is realized using butylated melamine formaldehyde. As a result, H2 is successfully generated using the integrated system composed of the designed TENG and catalyst. The finding provides a promising approach for energy generation to achieve net-zero.

2.
Small ; 20(26): e2307830, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38263814

RESUMO

Combining an electrochemically stable material onto the surface of a catalyst can improve the durability of a transition metal catalyst, and enable the catalyst to operate stably at high current density. Herein, the contribution of the N-doped carbon shell (NCS) to the electrochemical properties is evaluated by comparing the characteristics of the Ni3Fe@NCS catalyst with the N-doped carbon shell, and the Ni3Fe catalyst. The synthesized Ni3Fe@NCS catalyst has a distinct overpotential difference from the Ni3Fe catalyst (ηOER = 468.8 mV, ηHER = 462.2 mV) at (200 and -200) mA cm-2 in 1 m KOH. In stability test at (10 and -10) mA cm-2, the Ni3Fe@NCS catalyst showed a stability of (95.47 and 99.6)%, while the Ni3Fe catalyst showed a stability of (72.4 and 95.9)%, respectively. In addition, the in situ X-ray Absorption Near Edge Spectroscopy (XANES) results show that redox reaction appeared in the Ni3Fe catalyst by applying voltages of (1.7 and -0.48) V. The decomposition of nickel and iron due to the redox reaction is detected as a high ppm concentration in the Ni3Fe catalyst through Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) analysis. This work presents the strategy and design of a next-generation electrochemical catalyst to improve the electrocatalytic properties and stability.

3.
Small ; : e2312120, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558528

RESUMO

The tunable properties of 2D transition-metal dichalcogenide (TMDs) materials are extensively investigated for high-performance and wavelength-tunable optoelectronic applications. However, the precise modification of large-scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer-scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large-area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single-source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2-, Ni0.06Mo0.26S0.68-, and Ni0.1Mo0.9S1.79Se0.21-based photodetectors is 3.51 × 10-4, 1.48, and 0.9 A W-1 for 532 nm and 0.063, 0.42, and 1.4 A W-1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near-infrared (NIR) photodetection.

4.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985774

RESUMO

Silver nanoparticles (Ag-NPs) are most effective against pathogens and have widely been studied as antibacterial agents in commodity clothing, medical textile, and other hygiene products. However, prolonged utilization of silver and rapid mutation in bacterium stains has made them resistant to conventional silver agents. On the other hand, strict compliance against excessive utilization of toxic reagents and the current sustainability drive is forcing material synthesis toward green routes with extended functionality. In this study, we proposed an unprecedented chemical-free green synthesis of bioactive Ag-NPs without the incorporation of any chemicals. Cinnamon essential oil (ECO) was used as a bio-reducing agent with and without the mediation of lime extract. A rapid reaction completion with better shape and size control was observed in the vicinity of lime extract when incorporated into the reaction medium. The interaction of natural metabolites and citrus compounds with nanoparticles was established using Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The application of as-prepared nanoparticles on textiles encompasses extended bioactivity to treated fabric with infused easy-care performance. To the best of our knowledge, this is the first reported instance of utilizing bioactive silver nanoparticles as a functional finish, both as an antimicrobial and as for easy care in the absolute absence of toxic chemicals. The easy-care performance of fabric treated with lime-mediated nanoparticles was found to be 141O, which is around 26% better than bare cotton without any significant loss in fabric strength. Furthermore, to enlighten the sustainability of the process, the development traits were mapped with the United Nations Sustainable Development Goals (SDGs), which show significant influence on SDGs 3, 8, 9, and 14. With the effective suspension of microorganisms, added functionality, and eco-mapping with SDGs with the chemical-free synthesis of nanoparticles, widespread utilization can be found in various healthcare and hygiene products along with the fulfillment of sustainability needs.


Assuntos
Nanopartículas Metálicas , Nanosferas , Prata/farmacologia , Prata/química , Desenvolvimento Sustentável , Nanopartículas Metálicas/química , Antibacterianos/química , Vestuário , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
Small ; 17(17): e2007213, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33719185

RESUMO

Organic polymer-based dielectrics with intrinsic mechanical flexibility and good processability are excellent candidates for the dielectric layer of flexible electronics. These polymer films can become even more rigid and electrically robust when modified through cross-linking processes. Moreover, the composites formed by dispersing nanoscale inorganic fillers in a polymer matrix can exhibit further improved polarization property. However, these strategies can be challenging as homogeneous dispersion of nanomaterials in the matrix is difficult to achieve; thus, degradation of electrically insulating properties of nanocomposite layers is often observed. Here, a high-k, pinhole-free, and flexible poly(vinyl alcohol) (PVA)-based nanocomposite dielectric is presented, incorporating 2D TiO2 nanosheets (NSs) for the first time. Despite the attractive dielectric constant, exceptional flexibility, and electrically insulating property of PVA-TiO2 nanocomposites, only few studies on these materials have been reported. The organic/inorganic nanosheet hybrid layer, which reaches an unprecedentedly high dielectric constant of 43.8 (more than four times higher than that of cross-linked PVA), also exhibits an outstanding leakage current density as low as 10-9 A cm-2 . Furthermore, the repeated bending tests for nanocomposite capacitors reveal their capability of operating without any deterioration of their performances even after 1000 iterations of bending cycles at a bending radius of 3 mm.

6.
Cellulose (Lond) ; 28(18): 11609-11624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703085

RESUMO

Abstract: Cross-linkers have great importance in textile due to the widespread utilization of cellulosic fibers for clothing. Unfortunately, the acute toxicity of formaldehyde-based resins and the poor performance of non-formaldehyde resins still keep the research door open for scientists in this area. Herein, we demonstrated copper nanoparticles induced trimesic acid grafted cellulose as a sustainable solution for multifunctional easy-care clothing. Our treated fabric presents crease recovery angle value of 248° comparable to that of most promising citric acid-based cross-linkers at the chemical concentration of trimesic acid as low as 2% with a sweeping improvement of around 30% in strength retention, not reported earlier. The relatively low fabric stiffness, without any yellowing, is contributing to the comfort and aesthetic demand while nanoparticles induction promoting utmost antimicrobial need. For the first time, the superiority of the development was validated by interlacing the fabric/finish traits with sustainability building blocks that provide the step forward for rapid industrialization. Furthermore, environmental, health, and safety mapping comparison provides a better understanding of the intensity of hazards that different finishing crosslinkers pose on the environment and public health. With improved performance and superior sustainability, such fabric can act as a preferable alternative to the multifunctional easy-care fabric market. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-021-04251-5.

7.
Sensors (Basel) ; 20(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384704

RESUMO

Our objective in this study was to investigate a sensor for volatile organic compounds based on a graphite (G)/polypropylene glycol (PPG) hybrid composite (HC) for sensing hybrid elements. The G/PPG HC sensor films for organic-matter detection were successfully fabricated on polyethylene terephthalate (PET) film with a simple blade-coating method. The sensing paste based on G/PPG (1:2) HC showed good dispersibility and stability. In addition, G/PPG HC sensor films with organic compounds showed different thickness changes as a function of the G/PPG ratio because of the swelling effect of the polymer. The observed differences in resistance of the G/PPG HC films corresponded to those of common organic compounds, suggesting that the disconnection of graphite caused by the swollen PPG matrix caused explosive resistance change. Moreover, we evaluated the sensitivity of typical hydrocarbon materials, such as benzene and toluene, in the sensor film as well as petroleum materials without moisture-induced malfunctions. This study could provoke knowledge about superior sensing with cost-effective and easily scalable materials using polymer/graphite composite-based sensors to improve the sensitivity, selectivity, and stability of chemical sensor applications.

8.
J Nanosci Nanotechnol ; 19(3): 1609-1614, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469231

RESUMO

In this study, we prepared cobalt-manganese (oxy) hydroxide nanosheets assembled structure covered of reduced graphene oxide hybrid structure (Co-Mn (O)OH NAS@rGO HS) via reduction and hydroxylation of Mn1.5Co1.5[Co(CN)6]2@graphene oxide (GO). Obtained precursors were optimized at 15 mg GO, and these are hybrid structures in which nanocubes 200-400 nm in size were fully covered by multi-layered GO. The functional group (-COOH, -OH, C-O-C) of GO was removed through reduction by L-ascorbic acid. We obtained MnCOOH, Co(OH)2, and Co-Mn LDH synthesized by hydroxylation of Mn1.5Co1.5[Co(CN)6]2@GO via ion exchange between the CN group and OH-. The hybrid nanostructure between transition-metal oxide/hydroxide and reduced graphene oxide could be used in various fields, including lithium ion batteries, supercapacitors, and electrocatalyst for water splitting.

9.
Small ; 14(41): e1802933, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30216668

RESUMO

Nickel sulfides have drawn much attention with the benefits of a high redox activity, high electrical conductivity, low cost, and fabrication ease; however, these metal sulfides are susceptible to mechanical degradation regarding their cycling performance. Conversely, hollow carbon shells exhibit a substantial electrochemical steadiness in energy storage applications. Here, the design and development of a novel millerite core-nitrogen-doped carbon hollow shell (NiS-NC HS) structure for electrochemical energy storage is presented. The nitrogen-doped carbon hollow shell (NC HS) protects against the degradation and the millerite-core aggregation, giving rise to an excellent rate capability and stability during the electrochemical charging-discharging processes, in addition to improving the NiS-NC HS conductivity. The NiS-NC HS/18h supercapacitor electrode displays an outstanding specific capacitance of 1170.72 F g-1 (at 0.5 A g-1 ) and maintains 90.71% (at 6 A g-1 ) of its initial capacitance after 4000 charge-discharge cycles, owing to the unique core-shell structure. An asymmetric-supercapacitor device using NiS-NC HS and activated-carbon electrodes exhibits a high power and energy density with a remarkable cycling stability, maintaining 89.2% of its initial capacitance after 5000 cycles.

10.
Chemistry ; 24(13): 3263-3270, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29389044

RESUMO

Nickel cobalt sulfide nanoparticles embedded in holey defect graphene hydrogel (HGH) that exhibit highly porous structures and uniform nickel cobalt sulfide nanoparticle sizes are successfully prepared by a facile solvothermal-hydrothermal method. As an electrode material for supercapacitors, the as-prepared NiCo2 S4 @HGH shows ultra-high specific capacitances of 1000 F g-1 and 800 F g-1 at 0.5 and 6 A g-1 , respectively, owing to the outstanding electrical conductivity of HGH and high specific capacitance of NiCo2 S4 . After 2100 charge/discharge cycles at a current density of 6 A g-1 , 96.6 % of the specific capacitance was retained, signifying the superb durability of NiCo2 S4 @HGH. Moreover, remarkable specific capacitance (312.6 F g-1 ) and capacity retention (87 % after 5000 cycles) at 6 A g-1 were displayed by the symmetric solid-state supercapacitor fabricated by using NiCo2 S4 @HGH electrodes. These auspicious supercapacitor performances demonstrate that the as-developed solvothermal-hydrothermal approach can be widely used to prepare graphene-coupled binary metal sulfides for high-performance supercapacitor applications.

11.
Nanotechnology ; 28(14): 145401, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273053

RESUMO

Mesoporous amorphous binary Ru-Ti oxides were prepared as bifunctional catalysts for non-aqueous Li-O2 batteries, and their electrochemical performance was investigated for the first time. A Li-O2 battery with mesoporous amorphous binary Ru-Ti oxides exhibited a remarkably high capacity of 27100 mAh g-1 as well as a reduced overpotential. A GITT analysis suggested that the introduction of amorphous TiO2 to amorphous RuO2 was responsible for the enhanced kinetics toward both the oxygen reduction reaction and oxygen evolution reaction. Excellent cyclic stability up to 230 cycles was achieved, confirming the applicability of the new bifunctional catalyst in non-aqueous Li-O2 batteries.

12.
J Environ Manage ; 201: 286-293, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28683367

RESUMO

The PS@+rGO@GO@Fe3O4 (PG-Fe3O4) hybrid composites for Arsenic removal were successfully fabricated and well dispersed using layer-by-layer assembly and a hydrothermal method. The PG-Fe3O4 hybrid composites were composed of uniformly coated Fe3O4 nanoparticles on graphene oxide layers with water flow space between 3D structures providing many contact area and adsorption sites for Arsenic adsorption. The PG-Fe3O4 hybrid composite has large surface adsorption sites and exhibits high adsorption capacities of 104 mg/g for As (III) and 68 mg/g for As (V) at 25 °C and pH 7 comparison with pure Fe3O4 and P-Fe3O4 samples.


Assuntos
Arsênio , Adsorção , Grafite , Nanopartículas , Óxidos , Purificação da Água
13.
Chemistry ; 22(5): 1652-7, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26689298

RESUMO

Three-dimensional, vertically aligned MnO/nitrogen-doped graphene (3D MnO/N-Gr) walls were prepared through facile solution-phase synthesis followed by thermal treatment. Polyvinylpyrrolidone (PVP) was strategically added to generate cross-links to simultaneously form 3D wall structures and to incorporate nitrogen atoms into the graphene network. The unique wall features of the as-prepared 3D MnO/N-Gr hybirdes provide a large surface area (91.516 m(2) g(-1)) and allow for rapid diffusion of the ion electrolyte, resulting in a high specific capacitance of 378 F g(-1) at 0.25 A g(-1) and an excellent charge/discharge stability (93.7% capacity retention after 8000 cycles) in aqueous 1 m Na2 SO4 solution as electrolyte. Moreover, the symmetric supercapacitors that were rationally designed by using 3D MnO/N-Gr hybrids exhibit outstanding electrochemical performance in an organic electrolyte with an energy density of 90.6 Wh kg(-1) and a power density of 437.5 W kg(-1).

14.
Langmuir ; 31(2): 833-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25539482

RESUMO

To our best knowledge, monodispersed ß-Ga2O3 nanospheres were successfully synthesized for first time via morphology-controlled gallium precursors using the forced hydrolysis method, followed by thermal calcination processes. The morphology and particle sizes of the gallium precursors were strongly dependent on the varying (R = SO4(2-)/NO3(-)) concentration ratios. As R decreased, the size of the prepared gallium precursors decreased and morphology was altered from sphere to rod. The synthesized S2 (R = 0.33) consists of uniform and monodispersed amorphous nanospheres with diameters of about 200 nm. The monodispersed ß-Ga2O3 nanospheres were synthesized using thermal calcination processes at various temperatures ranging from 500 to 1000 °C. Monodispersed ß-Ga2O3 nanospheres (200 nm) consist of small particles of approximately 10-20 nm with rough surface at 1000 °C for 1 h. The UV (375 nm) and broad blue (400-450 nm) emission indicate recombination via a self-trapped exciton and the defect band emission. Our approach described here is to show the exploration of ß-Ga2O3 nanospheres as an automatic dispersion, three-dimensional support for fabrication of hierarchical materials, which is potentially important for a broad range of optoelectronic applications.

15.
J Nanosci Nanotechnol ; 14(11): 8325-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958522

RESUMO

A novel liquid-phase precursor (LPP) method using precursor nanoparticles (PNs) is proposed to synthesize yttrium aluminum garnet nano-sized phosphor (Y3Al5O12:Ce3+, nano-YAG:Ce) at 1100-1500 degrees C for 5 h. The influences of the heat-treatment and morphology properties of the PNs on the luminescence properties of the nano-YAG:Ce phosphor were investigated. Nano-YAG:Ce phosphor with better morphology and high luminescence efficiency was obtained with heat-treatment of PNs at 1200 degrees C. With more heat treatment, the phosphor particles agglomerated more, and the emission intensity increased. The broad photoluminescence excitation (PLE) and photoluminescence (PL) spectra of the nano-YAG:Ce phosphor were centered at 341 nm and 466 nm, respectively, due to the 4f --> 5d energy transition. The nonsymmetrical emission spectra range of 470-750 nm was centered at 529.2 nm due to the 5d --> 4f energy transition of Ce3+. The nano-YAG:Ce, and micro-YAG:Ce phosphors synthesized by the LPP method using precursor microparticles (PMs) and PNs were investigated and compared.


Assuntos
Alumínio/química , Cério/química , Substâncias Luminescentes/química , Nanopartículas/química , Ítrio/química , Temperatura Alta , Nanotecnologia , Tamanho da Partícula
16.
Angew Chem Int Ed Engl ; 53(30): 7756-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24916117

RESUMO

We report a new dicalcium silicate phosphor, Ca(2-x)Eu(x)SiO4, which emits red light in response to blue-light excitation. When excited at 450 nm, deep-red emission at 650 nm was clearly observed in Ca1.2Eu0.8SiO4, the external and internal quantum efficiencies of which were 44 % and 50 %, respectively. The red emission from Ca(2-x)Eu(x)SiO4 was strongly related to the peculiar coordination environments of Eu(2+) in two types of Ca sites. The red-emitting Ca2SiO4:Eu(2+) phosphors are promising materials for next-generation, white-light-emitting diode applications.

17.
J Nanosci Nanotechnol ; 13(3): 1741-5, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23755583

RESUMO

Zinc tin oxide (ZTO) films were fabricated on SiO2/Si substrate as a function of Mg concentration (the ratio of 3 to 10 atomic%) using a spin-coating process. For the characterization of thin film transistors (TFTs), Zn0.3Sn0.70 channel TFT exhibited a higher on/off ratio compared to Zn0.5 Sn.0.5O channel TFT because the higher Sn concentration can induce more charge carriers. 3 atomic% Mg incorporated Zn0.3Sn0.7O channel TFTs showed stable electrical performances such as I(on/off) - 1 x 10(7), micro(sat) = 1.40 cm2 V(-1) s(-1), and S = 0.39 V/decade. However, 10 atomic% Mg incorporated Zn0.3Sn0.7O channel TFTs deteriorated their electrical performances due to Mg segregation. The Mg incorporated Zn0.3Sn0.7O channel TFTs effectively suppress off-current and threshold voltage change during positive gate bias stress due to their strong bonding with oxygen.

18.
J Nanosci Nanotechnol ; 13(11): 7664-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245311

RESUMO

We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.


Assuntos
Fontes de Energia Elétrica , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Refratometria/instrumentação , Dióxido de Silício/química , Energia Solar , Titânio/química , Adsorção , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Transição de Fase , Propriedades de Superfície
19.
J Nanosci Nanotechnol ; 13(6): 4141-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862462

RESUMO

Carbon-coated SnO2 nano-composite was synthesized by using a hydrothermal method in a one step process with sizes of 1 to 3 microm. The carbon-coated SnO2 nano-composite was easily obtained by changing firing atmosphere from air to argon (600 degrees C for 3 hours). The carbon-coating thickness and size of the SnO2 nanoparticles in carbon-coated SnO2 nano-composite were confirmed through a high-resolution transmission electron microscopy (HRTEM) as 40 and 5 nm, respectively. Carbon-coating and particle size affect to the capacity retention property. Carbon-coated and non carbon-coated samples were investigated as anode materials. It was confirmed that the non carbon-coated SnO2 nano-composite had a 718 mA h/g initial charge capacity, 91% reached to theoretical value of SnO2 (790 mA h/g), while the carbon-coated SnO2 nano-composite had an excellent capacity retention of 89.6% after 70 cycles (10.88% for non carbon-coated SnO2 nano-composite).

20.
J Nanosci Nanotechnol ; 13(11): 7556-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245291

RESUMO

12CaO x 7Al2O3, insulator (C12A7) doped indium tin oxide (ITO) (ITO:C12A7) films were fabricated using a radio frequency magnetron co-sputtering system with ITO and C12A7 targets. The qualitative and quantitative properties of ITO:C12A7 films, as a function of C12A7 concentration, were examined via X-ray photoemission spectroscopy and synchrotron X-ray scattering as well as by conducting atomic force microscopy. The work function of ITO:C12A7 (1.3%) films of approximately 2.8 eV obtained by high resolution photoemission spectroscopy measurements make them a reasonable cathode for top-emission organic light-emitting diodes.


Assuntos
Óxido de Alumínio/química , Eletrodos , Iluminação/instrumentação , Nanoestruturas/química , Compostos Orgânicos/química , Semicondutores , Compostos de Estanho/química , Compostos de Cálcio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Óxidos/química , Tamanho da Partícula , Refratometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA