Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 48(7): 2138-2147, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36808020

RESUMO

Cuprizone causes consistent demyelination and oligodendrocyte damage in the mouse brain. Cu,Zn-superoxide dismutase 1 (SOD1) has neuroprotective potential against various neurological disorders, such as transient cerebral ischemia and traumatic brain injury. In this study, we investigated whether SOD1 has neuroprotective effects against cuprizone-induced demyelination and adult hippocampal neurogenesis in C57BL/6 mice, using the PEP-1-SOD1 fusion protein to facilitate the delivery of SOD1 protein into hippocampal neurons. Eight weeks feeding of cuprizone-supplemented (0.2%) diets caused a significant decrease in myelin basic protein (MBP) expression in the stratum lacunosum-moleculare of the CA1 region, the polymorphic layer of the dentate gyrus, and the corpus callosum, while ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia showed activated and phagocytic phenotypes. In addition, cuprizone treatment reduced proliferating cells and neuroblasts as shown using Ki67 and doublecortin immunostaining. Treatment with PEP-1-SOD1 to normal mice did not show any significant changes in MBP expression and Iba-1-immunoreactive microglia. However, Ki67-positive proliferating cells and doublecortin-immunoreactive neuroblasts were significantly decreased. Simultaneous treatment with PEP-1-SOD1 and cuprizone-supplemented diets did not ameliorate the MBP reduction in these regions, but mitigated the increase of Iba-1 immunoreactivity in the corpus callosum and alleviated the reduction of MBP in corpus callosum and proliferating cells, not neuroblasts, in the dentate gyrus. In conclusion, PEP-1-SOD1 treatment only has partial effects to reduce cuprizone-induced demyelination and microglial activation in the hippocampus and corpus callosum and has minimal effects on proliferating cells in the dentate gyrus.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Camundongos , Cuprizona/toxicidade , Superóxido Dismutase-1/metabolismo , Microglia/metabolismo , Antígeno Ki-67/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/genética , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Neurogênese , Corpo Caloso , Proteínas do Domínio Duplacortina , Zinco/metabolismo , Modelos Animais de Doenças
2.
J Cell Mol Med ; 26(20): 5122-5134, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071453

RESUMO

Nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a membrane protein that mediates cell adhesion. The role of Ninj1 during inflammatory response has been widely investigated in macrophages and endothelial cells. Ninj1 is expressed in various tissues, and the liver also expresses high levels of Ninj1. Although the hepatic upregulation of Ninj1 has been reported in human hepatocellular carcinoma and septic mice, little is known of its function during the pathogenesis of liver diseases. In the present study, the role of Ninj1 in liver inflammation was explored using lipopolysaccharide (LPS)/D-galactosamine (D-gal)-induced acute liver failure (ALF) model. When treated with LPS/D-gal, conventional Ninj1 knock-out (KO) mice exhibited a mild inflammatory phenotype as compared with wild-type (WT) mice. Unexpectedly, myeloid-specific Ninj1 KO mice showed no attenuation of LPS/D-gal-induced liver injury. Whereas, Ninj1 KO primary hepatocytes were relatively insensitive to TNF-α-induced caspase activation as compared with WT primary hepatocytes. Also, Ninj1 knock-down in L929 and AML12 cells and Ninj1 KO in HepG2 cells ameliorated TNF-α-mediated apoptosis. Consistent with in vitro results, hepatocyte-specific ablation of Ninj1 in mice alleviated LPS/D-gal-induced ALF. Summarizing, our in vivo and in vitro studies show that lack of Ninj1 in hepatocytes diminishes LPS/D-gal-induced ALF by alleviating TNF-α/TNFR1-induced cell death.


Assuntos
Moléculas de Adesão Celular Neuronais , Galactosamina , Falência Hepática Aguda , Fatores de Crescimento Neural , Animais , Apoptose , Caspases/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Humanos , Lipopolissacarídeos , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/genética , Falência Hepática Aguda/metabolismo , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Neurochem Res ; 47(4): 1073-1082, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35060065

RESUMO

Cuprizone is commonly used to induce neuronal demyelination in mice. In the present study, we compared the cuprizone-induced demyelination in the corpus callosum and investigated the effects of cuprizone on proliferating cells and neuroblasts in the dentate gyrus of young adult and aged mice. 5-week- and 23-month-old mice were fed a normal diet or a 0.2% cuprizone-enriched diet for 5 weeks. Mice fed a cuprizone-supplemented diet showed a significant reduction in myelin basic protein-positive structures in the corpus callosum, with the reduction in myelinated fibers being confirmed by electron microscopic analysis. In addition, we observed a marked increase in Ki67-positive proliferating cells and doublecortin-immunoreactive neuroblasts in young adult mice in response to cuprizone treatment, although not in aged mice, as the basal levels of these cells were significantly lower in these older mice. Furthermore, Ser133-phosphorylated cAMP response element-binding protein (pCREB)-positive nuclei and brain-derived neurotrophic factor (BDNF) protein levels were significantly reduced in young adult mice following cuprizone treatment in young adult, although again not in the aged mice. However, in both young adult and aged mice, there were no significant reductions in hippocampal mature neurons in response to cuprizone treatment. These observations indicate that in the mice of both age groups a cuprizone-supplemented diet contributes to an increase in demyelination in the corpus callosum and neural progenitor cells in the dentate gyrus, although the damage is more pronounced in young adult mice. This demyelination and reduction in neural progenitor cells may be associated with changes in the levels of BDNF and pCREB in the dentate gyrus.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Corpo Caloso , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia
4.
Neurochem Res ; 46(12): 3123-3134, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34403064

RESUMO

p27Kip1 (p27) regulates the cell cycle by inhibiting G1 progression in cells. Several studies have shown conflicting results on the effects of p27 against cell death in various insults. In the present study, we examined the neuroprotective effects of p27 against H2O2-induced oxidative stress in NSC34 cells and against spinal cord ischemia-induced neuronal damage in rabbits. To promote delivery into NSC34 cells and motor neurons in the spinal cord, Tat-p27 fusion protein and its control protein (Control-p27) were synthesized with or without Tat peptide, respectively. Tat-p27, but not Control-27, was efficiently introduced into NSC34 cells in a concentration- and time-dependent manner, and the protein was detected in the cytoplasm. Tat-p27 showed neuroprotective effects against oxidative stress induced by H2O2 treatment and reduced the formation of reactive oxygen species, DNA fragmentation, and lipid peroxidation in NSC34 cells. Tat-p27, but not Control-p27, ameliorated ischemia-induced neurological deficits and cell damage in the rabbit spinal cord. In addition, Tat-p27 treatment reduced the expression of α-synuclein, activation of microglia, and release of pro-inflammatory cytokines such as interleukin-1ß and tumor necrosis factor-α in the spinal cord. Taken together, these results suggest that Tat-p27 inhibits neuronal damage by decreasing oxidative stress, α-synuclein expression, and inflammatory responses after ischemia.


Assuntos
Produtos do Gene tat/administração & dosagem , Inflamação/imunologia , Doença dos Neurônios Motores/prevenção & controle , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Isquemia do Cordão Espinal/complicações , alfa-Sinucleína/antagonistas & inibidores , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peroxidação de Lipídeos , Masculino , Doença dos Neurônios Motores/etiologia , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Coelhos , Espécies Reativas de Oxigênio/metabolismo
5.
Mar Drugs ; 18(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255381

RESUMO

Laminaria japonica is widely cultivated in East Asia, including South Korea. Fucoidan, a main component of L. japonica, protects neurons from neurological disorders such as ischemia and traumatic brain injury. In the present study, we examined the effects of extract from fermented L. japonica on the reduction of proliferating cells and neuroblasts in mice that were physically (with electric food shock) or psychologically (with visual, auditory and olfactory sensation) stressed with the help of a communication box. Vehicle (distilled water) or fermented L. japonica extract (50 mg/kg) were orally administered to the mice once a day for 21 days. On the 19th day of the treatment, physical and psychological stress was induced by foot shock using a communication box and thereafter for three days. Plasma corticosterone levels were significantly increased after exposure to physical stress and decreased Ki67 positive proliferating cells and doublecortin immunoreactive neuroblasts. In addition, western blot analysis demonstrated that physical stress as well as psychological stress decreased the expression levels of brain-derived neurotrophic factor (BDNF) and the number of phosphorylated cAMP response element binding protein (pCREB) positive nuclei in the dentate gyrus. Fermentation of L. japonica extract significantly increased the contents of reduced sugar and phenolic compounds. Supplementation with fermented L. japonica extract significantly ameliorated the increases of plasma corticosterone revels and decline in the proliferating cells, neuroblasts, and expression of BDNF and pCREB in the physically stressed mice. These results indicate that fermented L. japonica extract has positive effects in ameliorating the physical stress induced reduction in neurogenesis by modulating BDNF and pCREB expression in the dentate gyrus.


Assuntos
Proliferação de Células/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Fermentação , Laminaria/microbiologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Corticosterona/sangue , Giro Denteado/metabolismo , Giro Denteado/patologia , Proteínas do Domínio Duplacortina , Antígeno Ki-67/metabolismo , Laminaria/metabolismo , Masculino , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuropeptídeos/metabolismo , Fármacos Neuroprotetores/isolamento & purificação , Fosforilação , Transdução de Sinais , Estresse Fisiológico , Estresse Psicológico
6.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327462

RESUMO

p27Kip1 (p27), a well-known cell regulator, is involved in the regulation of cell death and survival. In the present study, we observed the effects of p27 against oxidative stress induced by H2O2 in HT22 cells and transient ischemia in gerbils. Tat (trans-acting activator of transcription) peptide and p27 fusion proteins were prepared to facilitate delivery into cells and across the blood-brain barrier. The tat-p27 fusion protein, rather than its control protein Control-p27, was delivered intracellularly in a concentration and incubation time-dependent manner and showed its activity in HT22 cells. The localization of the delivered Tat-p27 protein was also confirmted in the HT22 cells and hippocampus in gerbils. In addition, the optimal concentration (5 µM) of Tat-p27 was determined to protect neurons from cell death induced by 1 mM H2O2. Treatment with 5 µM Tat-p27 significantly ameliorated H2O2-induced DNA fragmentation and the formation of reactive oxygen species (ROS) in HT22 cells. Tat-p27 significantly mitigated the increase in locomotor activity a day after ischemia and neuronal damage in the hippocampal CA1 region. It also reduced the ischemia-induced membrane phospholipids and ROS formation. In addition, Tat-p27 significantly increased microtubule-associated protein 1A/1B light chain 3A/3B expression and ameliorated the H2O2 or ischemia-induced increases of p62 and decreases of beclin-1 in the HT22 cells and hippocampus. These results suggest that Tat-p27 protects neurons from oxidative or ischemic damage by reducing ROS-induced damage and by facilitating the formation of autophagosomes in hippocampal cells.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/genética , Gerbillinae , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
7.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050051

RESUMO

Phosphoglycerate mutase 1 (PGAM1) is a glycolytic enzyme that increases glycolytic flux in the brain. In the present study, we examined the effects of PGAM1 in conditions of oxidative stress and ischemic damage in motor neuron-like (NSC34) cells and the rabbit spinal cord. A Tat-PGAM1 fusion protein was prepared to allow easy crossing of the blood-brain barrier, and Control-PGAM1 was synthesized without the Tat peptide protein transduction domain. Intracellular delivery of Tat-PGAM1, not Control-PGAM1, was achieved in a time- and concentration-dependent manner. Immunofluorescent staining confirmed the intracellular expression of Tat-PGAM1 in NSC34 cells. Tat-PGAM1, but not Control-PGAM1, significantly alleviated H2O2-induced oxidative stress, neuronal death, mitogen-activated protein kinase, and apoptosis-inducing factor expression in NSC34 cells. After ischemia induction in the spinal cord, Tat-PGAM1 treatment significantly improved ischemia-induced neurological impairments and ameliorated neuronal cell death in the ventral horn of the spinal cord 72 h after ischemia. Tat-PGAM1 treatment significantly mitigated the ischemia-induced increase in malondialdehyde and 8-iso-prostaglandin F2α production in the spinal cord. In addition, Tat-PGAM1, but not Control-PGAM1, significantly decreased microglial activation and secretion of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α induced by ischemia in the ventral horn of the spinal cord. These results suggest that Tat-PGAM1 can be used as a therapeutic agent to reduce spinal cord ischemia-induced neuronal damage by lowering the oxidative stress, microglial activation, and secretion of pro-inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α.


Assuntos
Morte Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Neurônios Motores/metabolismo , Mielite/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Fosfoglicerato Mutase/administração & dosagem , Isquemia do Cordão Espinal/tratamento farmacológico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Células Híbridas , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Neurônios Motores/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Transdução de Sinais/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
8.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759679

RESUMO

We investigated the effects of pyridoxine deficiency on ischemic neuronal death in the hippocampus of gerbil (n = 5 per group). Serum pyridoxal 5'-phosphate levels were significantly decreased in Pyridoxine-deficient diet (PDD)-fed gerbils, while homocysteine levels were significantly increased in sham- and ischemia-operated gerbils. PDD-fed gerbil showed a reduction in neuronal nuclei (NeuN)-immunoreactive neurons in the medial part of the hippocampal CA1 region three days after. Reactive astrocytosis and microgliosis were found in PDD-fed gerbils, and transient ischemia caused the aggregation of activated microglia in the stratum pyramidale three days after ischemia. Lipid peroxidation was prominently increased in the hippocampus and was significantly higher in PDD-fed gerbils than in Control diet (CD)-fed gerbils after ischemia. In contrast, pyridoxine deficiency decreased the proliferating cells and neuroblasts in the dentate gyrus in sham- and ischemia-operated gerbils. Nuclear factor erythroid-2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF) levels also significantly decreased in PDD-fed gerbils sham 24 h after ischemia. These results suggest that pyridoxine deficiency accelerates neuronal death by increasing serum homocysteine levels and lipid peroxidation, and by decreasing Nrf2 levels in the hippocampus. Additionally, it reduces the regenerated potentials in hippocampus by decreasing BDNF levels. Collectively, pyridoxine is an essential element in modulating cell death and hippocampal neurogenesis after ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Gerbillinae/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/genética , Piridoxina/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Proliferação de Células/efeitos dos fármacos , Dieta , Gerbillinae/genética , Hipocampo/metabolismo , Fator 2 Relacionado a NF-E2/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Piridoxina/deficiência , Piridoxina/farmacologia
9.
Biochem Biophys Res Commun ; 513(1): 49-55, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30935693

RESUMO

Liver fibrosis is characterized by formation of scar tissue in the liver. The role of STAT3 signaling has been implicated on activating hepatic stellate cells (HSC) to myofibroblast-like cells in liver fibrosis. Major factors that activate STAT3 signaling are TGF-ß1 and IL-6, which are upregulated in the liver in patients afflicted with liver fibrosis. Recent reports indicate that not only IL-6, but also the non-canonical signaling pathway of TGF-ß1 is associated with STAT3 signaling. In this study, we demonstrate a new function of the STAT3 inhibitor, STX-0119, in liver fibrosis. STX-0119 is an inhibitor of STAT3 dimerization, which is required for nuclear localization of STAT3. We first investigated the anti-fibrotic effect of STX-0119 in in vitro experiments. Exposure to STX-0119 inhibited the nuclear localization of STAT3 in HSCs, resulting in decreased expression of its target genes, such as col1a1 and αSMA. In addition, STX-0119 also inhibited the TGF-ß1/IL-6-induced activation of HSCs. Next, we examined the in vivo effect of STX-0119 in the liver fibrosis mouse model using thioacetamide (TAA) and carbon tetrachloride (CCl4). STX-0119 attenuated the TAA-induced liver fibrosis by inhibiting activation of HSCs to myofibroblast-like cells. Consistent with the in vivo results using TAA-induced liver fibrosis model, treatment of STX-0119 similarly attenuated CCl4-induced liver fibrosis. In conclusion, we believe that STX-0119 inhibits the development of liver fibrosis by blocking the activation of hepatic stellate cells. These results indicate that STX-0119 is a potential new therapeutic strategy to prevent disease progression to cirrhosis.


Assuntos
Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Oxidiazóis/uso terapêutico , Quinolinas/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Colágeno/análise , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Neurochem Res ; 44(2): 323-332, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30460638

RESUMO

In a previous study, we observed a significant increase in phosphoglycerate mutase 1 (PGAM1) levels after pyridoxine treatment. In the present study, we investigated the effects of PGAM1 on novel object recognition, cell proliferation, and neuroblast differentiation in the dentate gyrus. We generated a Tat-PGAM1 fusion protein to cross the blood-brain barrier and neuronal plasma membrane. We administered the Tat peptide, control-PGAM1, or Tat-PGAM1 fusion protein to 8-week-old mice once a day for 3 weeks and tested novel object recognition memory. The mice were then euthanized to conduct western blot analysis for polyhistidine expression and immunohistochemical analysis for Ki67, doublecortin, and phosphorylated cAMP response element-binding protein. Mice treated with Tat peptide showed similar exploration times for familiar and new objects and the discrimination index was significantly lower in this group than in the control group. Tat-PGAM1 moderately increased the exploration time of new objects when compared to familiar objects, while the discrimination index was significantly higher in the Tat-PGAM1-treated group, but not in the control-PGAM1-treated group, when compared with the control group. Higher PGAM1 protein expression was observed in the hippocampus of Tat-PGAM1-treated mice when compared with the hippocampi of control, Tat peptide-, and control-PGAM1-treated mice, using western blot analysis. In addition, the numbers of proliferating cells and differentiated neuroblasts were significantly lower in the Tat peptide-treated group than in the control group. In contrast, the numbers of proliferating cells and differentiated neuroblasts in the dentate gyrus were higher in the Tat-PGAM1-treated group than in the control group. Administration of Tat-PGAM1 significantly facilitated the phosphorylation of cAMP response element-binding protein in the dentate gyrus. Administration of control-PGAM1 did not show any significant effects on novel object recognition, cell proliferation, and neuroblast differentiation in the dentate gyrus. These results suggest that PGAM1 plays a role in cell proliferation and neuroblast differentiation in the dentate gyrus via the phosphorylation of cAMP response element-binding protein in the hippocampus.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fosfoglicerato Mutase/genética , Animais , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Neurônios/metabolismo , Fosforilação
11.
BMC Complement Altern Med ; 19(1): 94, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046739

RESUMO

BACKGROUND: The brain is susceptible to methylmercury toxicity, which causes irreversible damage to neurons and glia and the leaf extract Dendropanax morbifera Léveille (DML) has various biological functions in the nervous system. In this study, we examined the effects of DML on mercury-induced proliferating cells and differentiated neuroblasts. METHODS: Dimethylmercury (5 µg/kg) and galantamine (5 mg/kg) was administered intraperitoneally and/or DML (100 mg/kg) was orally to 7-week-old rats every day for 36 days. One hour after the treatment, novel object recognition test was examined. In addition, spatial probe tests were conducted on the 6th day after 5 days of continuous training in the Morris swim maze. Thereafter, the rats were euthanized for immunohistochemical staining analysis with Ki67 and doublecortin and measurement for acetylcholinesterase (AChE) activity. RESULTS: Dimethylmercury-treated rats showed reduced discrimination index in novel object recognition test and took longer to find the platform than did control group. Compared with dimethylmercury treatment alone, supplementation with DML or galatamine significantly ameliorated the reduction of discrimination index and reduced the time spent to find the platform. In addition, the number of platform crossings was lower in the dimethylmercury-treated group than in controls, while the administration of DML or galantamine significantly increased the number of crossings than did dimethylmercury treatment alone. Proliferating cells and differentiated neuroblasts, assessed by Ki67 and doublecortin immunohistochemical staining was significantly decreased in the dimethylmercury treated group versus controls. Supplementation with DML or galantamine significantly increased the number of proliferating cells and differentiated neuroblasts in the dentate gyrus. In addition, treatment with dimethylmercury significantly increased AChE activity in hippocampal homogenates, while treatment with dimethylmercury+DML or dimethylmercury+galantamine significantly ameliorated this increase. CONCLUSIONS: These results suggest that DML may be a functional food that improves dimethylmercury-induced memory impairment and ameliorates dimethylmercury-induced reduction in proliferating cells and differentiated neuroblasts, and demonstrates corresponding activation of AChE activity in the dentate gyrus.


Assuntos
Araliaceae/química , Giro Denteado/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Neurogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Memória Espacial/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Giro Denteado/citologia , Proteína Duplacortina , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley
12.
Int J Mol Sci ; 19(7)2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002285

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic or recurrent inflammation of the gastrointestinal tract. Even though the current strategies to treat IBD include anti-inflammatory drugs and immune modulators, these treatments have side-effects. New strategies are, therefore, required to overcome the limitations of the therapies. In this study, we investigated the anti-colitic effects of allyl isothiocyanate (AITC), which is an active ingredient present in Wasabia japonica. The DSS-induced colitis model in the mouse was used to mimic human IBD and we observed that AITC treatment ameliorated the severity of colitis. We further studied the mechanism involved to ameliorate the colitis. To investigate the involvement of AITC on the intestinal barrier function, the effect on the intercellular tight junction was evaluated in the Caco-2 cell line while mucin expression was assessed in the LS174T cell line. AITC positively regulated tight junction proteins and mucin 2 (MUC2) against DSS-induced damage or depletion. Our data of in vivo studies were also consistent with the in vitro results. Furthermore, we observed that MUC2 increased by AITC is dependent on ERK signaling. In conclusion, we propose that AITC can be considered as a new strategy for treating IBD by modulating tight junction proteins and mucin.


Assuntos
Sulfato de Dextrana/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças Inflamatórias Intestinais , Isotiocianatos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mucina-2/biossíntese , Junções Íntimas/metabolismo , Animais , Células CACO-2 , Feminino , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/prevenção & controle , Isotiocianatos/química , Lipopolissacarídeos/toxicidade , Camundongos , Células RAW 264.7 , Junções Íntimas/patologia , Wasabia/química
13.
Neurochem Res ; 42(11): 3149-3159, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28770438

RESUMO

In the present study, we investigated the concentration-dependent effect of zinc (Zn) supplementation on the adult hippocampus in a high-fat diet (HFD)-fed obese mouse model. Four-weeks after HFD- and control diet (CD)-feeding, mice were provided with low (15 ppm) or high (60 ppm) doses of Zn in their drinking water for additional 4 more weeks along with their respective diets. Compared to the CD-fed mice, HFD-feeding elicited the reduction of neurogenic markers such as nestin, Ki67, doublecortin (DCX), and 5-bromo-2'-deoxyuridine (BrdU) in the dentate gyrus. Additionally, HFD-feeding reduced the levels of synaptic markers (synaptophysin and N-methyl-D-aspartate receptor) and brain-derived neurotrophic factor (BDNF), while lipid peroxidation was significantly increased in the hippocampus of HFD-fed mice. Against detrimental effects of high-dose Zn, low-dose Zn supplementation in CD-fed mice did not yield any remarkable changes in these parameters. Interestingly, administration of low doses of Zn to HFD-induced obese mice prominently ameliorated HFD-induced changes in neurogenic, synaptic plasticity markers and BDNF levels as well as lipid peroxidation in the hippocampus. In contrast, high-dose Zn supplementation in HFD-fed mice exacerbated the reduction of markers for neurogenesis and synaptic plasticity as well as BDNF levels, but not 4-HNE levels, in the hippocampus. These results suggest that low-dose Zn supplementation in obese mice could reverse the HFD-induced reduction in neurogenic and synaptic marker proteins in the hippocampus by reducing lipid peroxidation and improving BDNF expression, while high-dose Zn supplementation exacerbates the reduction of neurogenesis by affecting synaptic markers and BDNF levels in the hippocampus.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Hipocampo/metabolismo , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Zinco/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Proteína Duplacortina , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos
14.
Biochim Biophys Acta Gen Subj ; 1861(12): 3142-3153, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935605

RESUMO

BACKGROUND: In the present study, we investigated the effects of pyridoxine on hippocampal functions and changes in protein profiles based on the proteomic approach. METHODS: Eight-week-old mice received intraperitoneal injections of physiological saline (vehicle) or 350mg/kg pyridoxine twice a day for 21days. RESULTS: Phosphoglycerate mutase 1 was up-regulated, while CB1 cannabinoid receptor-interacting protein 1 (CRIP1) was down-regulated, in the pyridoxine-treated group. Additionally, the serotonin and tyrosine hydroxylase was increased in the hippocampus of the pyridoxine-treated group than in that of the vehicle-treated group. Furthermore, discrimination indices based on the novel object recognition test were significantly higher in the pyridoxine-treated group than in the vehicle-treated group. Administration of CRIP1a siRNA significantly increases the discrimination index as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, the administration of rimonabant, a CB1 cannabinoid receptor antagonist, for 3weeks significantly decreased the novel object recognition memory, the tyrosine hydroxylase level, the amount of cell proliferation, and neuroblast differentiation in the dentate gyrus. Treatment with pyridoxine significantly increased novel object recognition memory, but slightly ameliorated rimonabant-induced reduction in serotonin, the tyrosine hydroxylase level, the amount of cell proliferation, and neuroblast differentiation in the dentate gyrus. CONCLUSION: These results suggest that pyridoxine promotes hippocampal functions by increasing serotonin and tyrosine hydroylase immunoreactivity in the hippocampus. This positive effect may be associated with CRIP1a and CB1 cannabinoid receptor function. GENERAL SIGNIFICANCE: Vitamin-B6 enhances hippocampal functions and this is closely associated with CRIP1a and CB1 cannabinoid receptors.


Assuntos
Proteínas de Transporte/fisiologia , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Proteínas com Domínio LIM/fisiologia , Piridoxina/farmacologia , Receptor CB1 de Canabinoide/fisiologia , Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Hipocampo/fisiologia , Imuno-Histoquímica , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide/análise , Tirosina 3-Mono-Oxigenase/análise
15.
Neural Plast ; 2017: 5863258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29391953

RESUMO

The genetic background of mice has various influences on the efficacy of physical exercise, as well as adult neurogenesis in the hippocampus. In this study, we investigated the basal level of hippocampal neurogenesis, as well as the effects of treadmill exercise on adult hippocampal neurogenesis in 9 mouse strains: 8 very commonly used laboratory inbred mouse strains (C57BL/6, BALB/c, A/J, C3H/HeJ, DBA/1, DBA/2, 129/SvJ, and FVB) and 1 outbred mouse strain (ICR). All 9 strains showed diverse basal levels of cell proliferation, neuroblast differentiation, and integration into granule cells in the sedentary group. C57BL/6 mice showed the highest levels of cell proliferation, neuroblast differentiation, and integration into granule cells at basal levels, and the DBA/2 mice showed the lowest levels. The efficacy of integration into granule cells was maximal in ICR mice. Treadmill exercise increased adult hippocampal neurogenesis in all 9 mouse strains. These results suggest that the genetic background of mice affects hippocampal neurogenesis and C57BL/6 mice are the most useful strain to assess basal levels of cell proliferation and neuroblast differentiation, but not maturation into granule cells. In addition, the DBA/2 strain is not suitable for studying hippocampal neurogenesis.


Assuntos
Hipocampo/fisiologia , Neurogênese , Condicionamento Físico Animal , Animais , Animais não Endogâmicos , Peso Corporal , Diferenciação Celular , Proliferação de Células , Ingestão de Alimentos , Masculino , Camundongos/genética , Camundongos/fisiologia , Camundongos Endogâmicos , Neurônios/fisiologia
16.
Cell Mol Neurobiol ; 36(1): 57-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26105991

RESUMO

Hes6 is a member of the hairy-enhancer of split homolog (Hes) family of transcription factors and interacts with other Hes family genes. During development, Hes genes are expressed in neural stem cells and progenitor cells. However, the role of Hes6 in adult hippocampal neurogenesis remains unclear. We therefore investigated the effects of Hes6 on adult hippocampal neurogenesis, by comparing Hes6 knockout and wild-type mice. To this end, we immunostained for markers of neural stem cells and progenitor cells (nestin), proliferating cells (Ki67), post-mitotic neuroblasts and immature neurons (doublecortin, DCX), mature neuronal cells (NeuN), and astrocyte (S100ß). We also injected 5-bromo-2'-deoxyuridine (BrdU) to trace the fate of mitotic cells. Nestin- and Ki67-positive proliferating cells did now show any significant differences between wild and knockout groups. Hes6 knockout negatively affects neuroblast differentiation based on DCX immunohistochemistry. On the contrary, the ratio of the BrdU and NeuN double-positive cells did not show any significance, even though it was slightly higher in the knockout group. These results suggest that Hes6 is involved in the regulation of neuroblast differentiation during adult neurogenesis, but does not influence integration into mature neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Giro Denteado/citologia , Neurônios/citologia , Neurônios/metabolismo , Proteínas Repressoras/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Peso Corporal , Bromodesoxiuridina/metabolismo , Proliferação de Células , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Imunofluorescência , Genótipo , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Nestina/metabolismo , Células-Tronco Neurais/citologia , Neuropeptídeos/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , beta-Galactosidase/metabolismo
17.
Neurochem Res ; 41(4): 869-79, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26559686

RESUMO

In the present study, we investigated the protective effects of heme oxygenase (HO-1) against ischemic damage in motor neurons of the rabbit spinal cord. A PEP-1-HO-1 fusion protein was made to and confirmed the effective the penetration of HO-1 into spinal cord neurons at 8 h after treatment. Transient spinal cord ischemia was induced by occlusion of the abdominal aorta for 15 min. Vehicle (glycerol) or 0.375 mg/kg PEP-1-HO-1 was administered intraperitoneally to rabbits immediately after ischemia/reperfusion. Animals were sacrificed 15 min after reperfusion to measure lactate levels; 24 h after reperfusion to measure caspase 3 and myeloperoxidase levels, lipid peroxidation, and the activity of Cu,Zn-superoxide dismutase (SOD1) and catalase (CAT); or 72 h after reperfusion to assess neuronal survival and measure the levels of brain-derived neurotrophic factor (BDNF) in spinal cord homogenates. Administration of PEP-1-HO-1 did not significantly alter arterial blood gases (PaCO2 and PaO2), pH, or blood glucose levels before ischemia, 10 min after occlusion, or 10 min after reperfusion. Mean arterial pressure was selectively reduced 10 min after occlusion. Administration of PEP-1-HO-1 improved the rabbit Tarlov scores, and increased neuronal survival, as assessed by NeuN immunohistochemical staining 72 h after ischemia/reperfusion. In addition, administration of PEP-1-HO-1 significantly ameliorated lactate accumulation 15 min after reperfusion, and the increases in caspase 3, myeloperoxidase, and lipid peroxidation 24 h after reperfusion. PEP-1-HO-1 administration significantly mitigated the decrease in SOD1 and CAT 24 h after reperfusion, and reversed the decrease in BDNF levels in spinal cord homogenates 72 h after ischemia/reperfusion. These results suggest that PEP-1-HO-1 can protect against neuronal damage after transient spinal cord ischemia by limiting early lactic acidosis and increasing SOD1, CAT, and BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catalase/metabolismo , Heme Oxigenase-1/farmacologia , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Medula Espinal/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Isquemia/metabolismo , Isquemia/patologia , Isquemia/fisiopatologia , Ácido Láctico/metabolismo , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Coelhos , Medula Espinal/irrigação sanguínea , Medula Espinal/metabolismo , Medula Espinal/patologia , Regulação para Cima
18.
Neurochem Res ; 41(12): 3300-3307, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27743287

RESUMO

In the present study, we investigated the ability of Cu, Zn-superoxide dismutase (SOD1) to improve the therapeutic potential of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) against ischemic damage in the spinal cord. Animals were divided into four groups: the control group, vehicle (PEP-1 peptide and artificial cerebrospinal fluid)-treated group, Ad-MSC alone group, and Ad-MSC-treated group with PEP-1-SOD1. The abdominal aorta of the rabbit was occluded for 30 min in the subrenal region to induce ischemic damage, and immediately after reperfusion, artificial cerebrospinal fluid or Ad-MSCs (2 × 105) were administered intrathecally. In addition, PEP-1 or 0.5 mg/kg PEP-1-SOD1 was administered intraperitoneally to the Ad-MSC-treated rabbits. Motor behaviors and NeuN-immunoreactive neurons were significantly decreased in the vehicle-treated group after ischemia/reperfusion. Administration of Ad-MSCs significantly ameliorated the changes in motor behavior and NeuN-immunoreactive neuronal survival. In addition, the combination of PEP-1-SOD1 and Ad-MSCs further increased the ameliorative effects of Ad-MSCs in the spinal cord after ischemia. Furthermore, the administration of Ad-MSCs with PEP-1-SOD1 decreased lipid peroxidation and maintained levels of antioxidants such as SOD1 and glutathione peroxidase compared to the Ad-MSC alone group. These results suggest that combination therapy using Ad-MSCs and PEP-1-SOD1 strongly protects neurons from ischemic damage by modulating the balance of lipid peroxidation and antioxidants.


Assuntos
Tecido Adiposo/citologia , Antioxidantes/metabolismo , Cisteamina/análogos & derivados , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Medula Espinal/irrigação sanguínea , Superóxido Dismutase-1/metabolismo , Animais , Cisteamina/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Isquemia/enzimologia , Isquemia/psicologia , Peroxidação de Lipídeos , Masculino , Células-Tronco Mesenquimais/metabolismo , Atividade Motora , Peptídeos/genética , Coelhos , Proteínas Recombinantes de Fusão/genética , Superóxido Dismutase-1/genética
19.
BMC Complement Altern Med ; 16(1): 452, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829466

RESUMO

BACKGROUND: Cadmium leads to learning and memory impairment. Dendropanax morbifera Léveille stem extract (DMS) reduces cadmium-induced oxidative stress in the hippocampus. We investigated the effects of DMS on cadmium-induced impairments in memory in rats. METHODS: Cadmium (2 mg/kg), with or without DMS (100 mg/kg), was orally administered to 7-week-old Sprague-Dawley rats for 28 days. Galantamine (5 mg/kg), an acetylcholinesterase inhibitor, was intraperitoneally administered as a positive control. A novel-object recognition test was conducted 2 h after the final administration. Cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin, respectively. Acetylcholinesterase activity in the synaptosomes of the hippocampus was also measured based on the formation of 5,5'-dithio-bis-acid nitrobenzoic acid. RESULTS: An increase in the preferential exploration time of new objects was observed in both vehicle-treated and cadmium-treated rats. In addition, DMS administration increased cell proliferation and neuroblast differentiation in the dentate gyrus of vehicle-treated and cadmium-treated rats. Acetylcholinesterase activity in the hippocampal synaptosomes was also significantly higher in the DMS-treated group than in the vehicle-treated group. The effect of DMS on cadmium-induced memory impairment and cell proliferation in the hippocampus was comparable to that of galantamine. CONCLUSIONS: These results suggest that DMS ameliorates cadmium-induced memory impairment via increase in cell proliferation, neuroblast differentiation, and acetylcholinesterase activity in the hippocampus. The consumption of DMS may reduce cadmium-induced neurotoxicity in animals or humans.


Assuntos
Araliaceae/química , Cádmio/toxicidade , Hipocampo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Duplacortina , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
20.
BMC Complement Altern Med ; 16(1): 431, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809818

RESUMO

BACKGROUND: In the present study, we investigated the effects of oil products from two Allium species: Allium sativum (garlic) and Allium hookeri (Chinese chives) on cell proliferation and neuroblast differentiation in the mouse dentate gyrus. METHODS: Using corn oil as a vehicle, the essential oil from garlic (10 ml/kg), or Chinese chives (10 ml/kg) was administered orally to 9-week-old mice once a day for 3 weeks. One hour following the last treatment, a novel object recognition test was conducted and the animals were killed 2 h after the test. RESULTS: In comparison to the vehicle-treated group, garlic essential oil (GO) treatment resulted in significantly increased exploration time and discrimination index during the novel object recognition test, while Chinese chives essential oil (CO) reduced the exploration time and discrimination index in the same test. In addition, the number of Ki67-immunoreactive proliferating cells and doublecortin-immunoreactive neuroblasts significantly increased in the dentate gyrus of GO-treated animals. However, administration of CO significantly decreased cell proliferation and neuroblast differentiation. Administration of GO significantly increased brain-derived neurotrophic factor (BDNF) levels and decreased acetylcholinesterase (AChE) activity in the hippocampal homogenates. In contrast, administration of CO decreased BDNF protein levels and had no significant effect on AChE activity, compared to that in the vehicle-treated group. CONCLUSIONS: These results suggest that GO significantly improves novel object recognition as well as increases cell proliferation and neuroblast differentiation, by modulating hippocampal BDNF protein levels and AChE activity, while CO impairs novel object recognition and decreases cell proliferation and neuroblast differentiation, by reducing BDNF protein levels in the hippocampus.


Assuntos
Acetilcolinesterase/metabolismo , Allium/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Giro Denteado/química , Giro Denteado/citologia , Comportamento Exploratório/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA