Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(34): e202400618, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570328

RESUMO

Sulfur-coordinated coordination polymers (S-CPs) have unique optoelectrical properties that originate from infinite M-S bond networks. In this study, we synthesized and characterized two polymorphs of a two-dimensional (2D) Pb(II) S-CP with a formula of [Pb(tzdt)(OAc)] (Htzdt=1,3-thiazolidine-2-thione, OAc=acetate). Our findings revealed that the thermodynamic product (KGF-26) possesses quasi-2D (-Pb-S-)n layers with weak nonbonded Pb-S bonds, whereas the kinetic product (KGF-27) has intrinsic 2D (-Pb-S-)n layers with Pb-S bonds. The results of time-resolved microwave conductivity measurements and first-principles calculations confirmed that KGF-27 exhibits higher photoconductivity than KGF-26, which establishes that the inorganic (-Pb-S-)n networks with Pb-S bonds are crucial for achieving high photoconductivity. This is the first experimental demonstration of the impact of the (-M-S-)n networks in S-CPs on photoconductivity through the comparison of crystal polymorphisms.

2.
PLoS Genet ; 16(6): e1008865, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603360

RESUMO

Fpr1 (FK506-sensitive proline rotamase 1), a protein of the FKBP12 (FK506-binding protein 12 kDa) family in Saccharomyces cerevisiae, is a primary target for the immunosuppressive agents FK506 and rapamycin. Fpr1 inhibits calcineurin and TORC1 (target of rapamycin complex 1) when bound to FK506 and rapamycin, respectively. Although Fpr1 is recognised to play a crucial role in the efficacy of these drugs, its physiological functions remain unclear. In a hmo1Δ (high mobility group family 1-deleted) yeast strain, deletion of FPR1 induced severe growth defects, which could be alleviated by increasing the copy number of RPL25 (ribosome protein of the large subunit 25), suggesting that RPL25 expression was affected in hmo1Δfpr1Δ cells. In the current study, extensive chromatin immunoprecipitation (ChIP) and ChIP-sequencing analyses revealed that Fpr1 associates specifically with the upstream activating sequences of nearly all RPG (ribosomal protein gene) promoters, presumably in a manner dependent on Rap1 (repressor/activator site binding protein 1). Intriguingly, Fpr1 promotes the binding of Fhl1/Ifh1 (forkhead-like 1/interacts with forkhead 1), two key regulators of RPG transcription, to certain RPG promoters independently of and/or cooperatively with Hmo1. Furthermore, mutation analyses of Fpr1 indicated that for transcriptional function on RPG promoters, Fpr1 requires its N-terminal domain and the binding surface for rapamycin, but not peptidyl-prolyl isomerase activity. Notably, Fpr1 orthologues from other species also inhibit TORC1 when bound to rapamycin, but do not regulate transcription in yeast, which suggests that these two functions of Fpr1 are independent of each other.


Assuntos
Proteínas de Grupo de Alta Mobilidade/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Calcineurina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Fatores de Transcrição Forkhead/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Proteínas de Grupo de Alta Mobilidade/genética , Peptidilprolil Isomerase/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Tacrolimo/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica
3.
FEMS Yeast Res ; 22(1)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134922

RESUMO

The dimorphic yeast Yarrowia lipolytica has an ability to assimilate n-alkanes as carbon and energy sources. In this study, the roles of orthologs of Saccharomyces cerevisiae SEC14 family gene SFH2, which we named SFH21, SFH22, SFH23 and SFH24, of Y. lipolytica were investigated. The transcript levels of SFH21, SFH22 and SFH23, determined by RNA-seq analysis, qRT-PCR analysis and northern blot analysis, were found to increase in the presence of n-alkanes. The deletion mutant of SFH21, but not that of SFH22, SFH23 or SFH24, showed defects in growth in the media containing n-alkanes and in filamentous growth on the solid media containing n-alkanes. Additional deletions of SFH22 and SFH23 significantly exaggerated the defect in filamentous growth of the deletion mutant of SFH21, and expression of SFH22 or SFH24 using the SFH21 promoter partially suppressed the growth defect of the deletion mutant of SFH21 on n-alkanes. These results suggest that SFH2 orthologs are involved in the utilization of n-alkanes and filamentous growth in response to n-alkanes in Y. lipolytica.


Assuntos
Proteínas de Saccharomyces cerevisiae , Yarrowia , Alcanos , Proteínas Fúngicas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Yarrowia/metabolismo
4.
Angew Chem Int Ed Engl ; 61(36): e202206093, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35718885

RESUMO

The rapid evolution of electrical devices and the increasing demand for the supply of sustainable energy necessitate the development of high-performance energy storage systems such as rechargeable and redox flow batteries. However, these batteries typically contain inorganic active materials, which exhibit several critical drawbacks hindering further development. In this regard, azo compounds are promising alternatives, offering the benefits of fast kinetics, multi-electron redox reactions, and tunable (via structural adjustment) battery performance. Herein, we review the use of azo compounds as the active materials of rechargeable and redox flow batteries, discuss certain aspects of material design and electrochemical reaction mechanisms, and summarize the corresponding perspectives and research directions to facilitate further progress in this field.

5.
J Bacteriol ; 203(10)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33649148

RESUMO

Ribosomal protein S14 can be classified into three types. The first, the C+ type has a Zn2+ binding motif and is ancestral. The second and third are the C- short and C- long types, neither of which contain a Zn2+ binding motif and which are ca. 90 residues and 100 residues in length, respectively. In the present study, the C+ type S14 from Bacillus subtilis ribosomes (S14BsC+) were completely replaced by the heterologous C- long type of S14 from Escherichia coli (S14Ec) or Synechococcus elongatus (S14Se). Surprisingly, S14Ec and S14Se were incorporated fully into 70S ribosomes in B. subtilis However, the growth rates as well as the sporulation efficiency of the mutants harboring heterologous S14 were significantly decreased. In these mutants, the polysome fraction was decreased and the 30S and 50S subunits accumulated unusually, indicating that cellular translational activity of these mutants was decreased. In vitro analysis showed a reduction in the translational activity of the 70S ribosome fraction purified from these mutants. The abundance of ribosomal proteins S2 and S3 in the 30S fraction in these mutants was reduced while that of S14 was not significantly decreased. It seems likely that binding of heterologous S14 changes the structure of the 30S subunit, which causes a decrease in the assembly efficiency of S2 and S3, which are located near the binding site of S14. Moreover, we found that S3 from S. elongatus cannot function in B. subtilis unless S14Se is present.IMPORTANCE S14, an essential ribosomal protein, may have evolved to adapt bacteria to zinc-limited environments by replacement of a zinc-binding motif with a zinc-independent sequence. It was expected that the bacterial ribosome would be tolerant to replacement of S14 because of the previous prediction that the spread of C- type S14 involved horizontal gene transfer. In this study, we completely replaced the C+ type of S14 in B. subtilis ribosome with the heterologous C- long type of S14 and characterized the resulting chimeric ribosomes. Our results suggest that the B. subtilis ribosome is permissive for the replacement of S14, but coevolution of S3 might be required to utilize the C- long type of S14 more effectively.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/metabolismo , Evolução Molecular , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Escherichia coli/química , Filogenia , Biossíntese de Proteínas , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Esporos Bacterianos/fisiologia , Synechococcus/química , Zinco/metabolismo
6.
Mol Microbiol ; 113(6): 1155-1169, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32052499

RESUMO

In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.


Assuntos
Bacillus subtilis/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Trifosfato/biossíntese , Ligases/metabolismo , Metionina/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Ligases/genética , Supressão Genética/genética , Transcrição Gênica/genética
7.
Chemistry ; 27(66): 16347-16353, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34623003

RESUMO

Novel metal-organic frameworks containing lanthanide double-layer-based secondary building units (KGF-3) were synthesized by using machine learning (ML). Isolating pure KGF-3 was challenging, and the synthesis was not reproducible because impurity phases were frequently obtained under the same synthetic conditions. Thus, dominant factors for the synthesis of KGF-3 were identified, and its synthetic conditions were optimized by using two ML techniques. Cluster analysis was used to classify the obtained powder X-ray diffractometry patterns of the products and thus automatically determine whether the experiments were successful. Decision-tree analysis was used to visualize the experimental results, after extracting factors that mainly affected the synthetic reproducibility. Water-adsorption isotherms revealed that KGF-3 possesses unique hydrophilic pores. Impedance measurements demonstrated good proton conductivities (σ=5.2×10-4  S cm-1 for KGF-3(Y)) at a high temperature (363 K) and relative humidity of 95 % RH.


Assuntos
Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Adsorção , Prótons , Reprodutibilidade dos Testes
8.
Chemistry ; 27(66): 16274, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34779549

RESUMO

Invited for the cover of this issue are Daisuke Tanaka at Kwansei Gakuin University and co-workers at Kwansei Gakuin University, Hokkaido University, Kyoto University, Japan and KU Leuven, Belgium. The image is a depiction of exploring the desired crystal by decision tree analysis. Read the full text of the article at 10.1002/chem.202102404.


Assuntos
Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Humanos
9.
Inorg Chem ; 60(17): 12691-12695, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34402610

RESUMO

Metal-organic frameworks (MOFs) and coordination polymers composed of thiolates as coordinating functional groups are interesting materials with unique optical and electronical properties. Herein, we report the preparation of KGF-4 and KGF-10, two Sn-MOF crystal structures with bonds between Sn and thiolate. KGF-10 was isolated as a pure phase and found to exhibit redox properties and a semiconducting band structure, as confirmed by first-principles (density functional theory) calculations.

10.
Inorg Chem ; 60(8): 5436-5441, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33830746

RESUMO

Coordination polymers with metal-sulfur (M-S) bonds in their nodes have interesting optical properties and can be used as photocatalysts for water splitting. A wide range of inorganic-organic hybrid materials with M-S bonds have been prepared in recent years. However, there is a dearth of structural information because of their low crystallinity, which has hampered the understanding of their underlying chemistry and physics. Thus, we conducted a structural study of a novel, highly crystalline coordination polymer with M-S bonds. Theoretical calculations were performed to elucidate its photoconductivity mechanism. The photoconductive, three-dimensional coordination polymer [Pb(tadt)]n (denoted as KGF-9; tadt = 1,3,4-thiadiazole-2,5-dithiolate) was synthesized and confirmed to have a three-dimensional structure containing a two-dimensional Pb-S framework by single-crystal X-ray diffraction. We also performed diffuse-reflectance ultraviolet-visible-near-infrared spectroscopy, time-resolved microwave conductivity, and photoelectron yield spectroscopy measurements on the bulk powder samples, as well as first-principles calculations. Additionally, direct-current photoconductivity measurements were conducted on a single-crystal sample.

11.
Angew Chem Int Ed Engl ; 60(43): 23217-23224, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34431599

RESUMO

Coordination polymers (CPs) with infinite metal-sulfur bond networks have unique electrical conductivities and optical properties. However, the development of new (-M-S-)n -structured CPs is hindered by difficulties with their crystallization. Herein, we describe the use of machine learning to optimize the synthesis of trithiocyanuric acid (H3 ttc)-based semiconductive CPs with infinite Ag-S bond networks, report three CP crystal structures, and reveal that isomer selectivity is mainly determined by proton concentration in the reaction medium. One of the CPs, [Ag2 Httc]n , features a 3D-extended infinite Ag-S bond network with 1D columns of stacked triazine rings, which, according to first-principle calculations, provide separate paths for holes and electrons. Time-resolved microwave conductivity experiments show that [Ag2 Httc]n is highly photoconductive (φΣµmax =1.6×10-4  cm2 V-1 s-1 ). Thus, our method promotes the discovery of novel CPs with selective topologies that are difficult to crystallize.

12.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32015144

RESUMO

Acetobacter pasteurianus is an industrial strain used for the vinegar production. Many A. pasteurianus strains with different phenotypic characteristics have been isolated so far. To understand the genetic background underpinning these phenotypes, a comparative genomic analysis of A. pasteurianus strains was conducted. Based on bioinformatics and experimental results, we report the following. (i) The gene repertoire related to the respiratory chains showed that several horizontal gene transfer events occurred after the divergence of these strains, indicating that the respiratory chain in A. pasteurianus has the diversity to adapt to its environment. (ii) There is a clear difference in thermotolerance even between 12 closely related strains. NBRC 3279, NBRC 3284, and NBRC 3283, in particular, which have only 55 mutations in total, showed differences in thermotolerance. The Na+/H+ antiporter gene nhaK2 was mutated in the thermosensitive NBRC 3279 and NBRC 3284 strains and not in the thermotolerant NBRC 3283 strain. The Na+/H+ antiporter activity of the three strains and expression of nhaK2 gene from NBRC 3283 in the two thermosensitive strains showed that these mutations are critical for thermotolerance. These results suggested that horizontal gene transfer events and several mutations have affected the phenotypes of these closely related strains.IMPORTANCEAcetobacter pasteurianus, an industrial vinegar-producing strain, exhibits diverse phenotypic differences such as respiratory activity related to acetic acid production, acetic acid resistance, or thermotolerance. In this study, we investigated the correlations between genome sequences and phenotypes among closely related A. pasteurianus strains. The gene repertoire related to the respiratory chains showed that the respiratory components of A. pasteurianus has a diversity caused by several horizontal gene transfers and mutations. In three closely related strains with clear differences in their thermotolerances, we found that the insertion or deletion that occurred in the Na+/H+ antiporter gene nhaK2 is directly related to their thermotolerance. Our study suggests that a relatively quick mutation has occurred in the closely related A. pasteurianus due to its genetic instability and that this has largely affected its phenotype.


Assuntos
Acetobacter/genética , Genoma Bacteriano , Acetobacter/classificação , Acetobacter/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transferência Genética Horizontal , Temperatura Alta , Fenótipo
13.
J Am Chem Soc ; 142(1): 27-32, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31868362

RESUMO

Recently, metal-organic frameworks (MOFs) composed of sulfur secondary building units (sulfur-SBUs) have attracted significant attention as unique electronic materials with high conductivities and photo- and electrocatalytic properties. Herein we report the crystal structure of KGF-1, an example of a Pb-MOF composed of three-dimensionally extended sulfur-SBUs that displays molecular sieving behavior, visible-light absorption, and a semiconductor band structure and is a hydrogen-evolution photocatalyst.

14.
Chemistry ; 26(41): 8889-8896, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32643834

RESUMO

To diversify metal-organic frameworks (MOFs), multi-component MOFs constructed from more than two kinds of bridging ligand have been actively investigated due to the high degree of design freedom afforded by the combination of multiple ligands. Predicting the synthesis conditions for such MOFs requires an understanding of the crystallization mechanism, which has so far remained elusive. In this context, microflow systems are efficient tools for capturing non-equilibrium states as they facilitate precise and efficient mixing with reaction times that correspond to the distance from the mixing point, thus enabling reliable control of non-equilibrium crystallization processes. Herein, we prepared coordination polymers with pillared-layer structures and observed the intermediates in the syntheses with an in-situ measurement system that combines microflow reaction with UV/Vis and X-ray absorption fine-structure spectroscopies, thereby enabling their rapid nucleation to be monitored. Based on the results, a three-step nonclassical nucleation mechanism involving two kinds of intermediate is proposed.

15.
Biosci Biotechnol Biochem ; 84(5): 1047-1055, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31900061

RESUMO

The thermophilic hydrogenotrophic methanogen Methanothermobacter sp. CaT2 aggregates by itself. CaT2 is known to have a surface sugar layer and extracellular proteins that may be related to its aggregation. Aggregation-enhanced mutants, CHA001 and CHA002, were isolated after repeated cultivation for more than two years. When treated with proteinase K, CHA001 and CaT2 similarly exhibited a very low degree of aggregation and CHA002 exhibited less aggregation but still retained aggregation, suggesting protein-based aggregation via extracellular proteins in both CHA001 and CHA002, presumably via a putative membrane-bound and extracellularly protruding protein, MTCT_1020, identified previously. Genomic analysis revealed that CHA001 and CHA002 shared a missense mutation of MTCT_1348 and had distinct mutations. These results suggested that the MTCT_1348 mutation provides subsidiary support to the adhesive function of extracellular proteins and that there is an additional mutation(s) in CHA002 for the non-proteinous aggregation capability.


Assuntos
Genoma Arqueal , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Mutação , Proteínas Arqueais/metabolismo , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , Espaço Extracelular/metabolismo , Metano/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Contraste de Fase , Sequenciamento Completo do Genoma
16.
Proc Natl Acad Sci U S A ; 114(39): E8304-E8313, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893987

RESUMO

Some microalgae are adapted to extremely acidic environments in which toxic metals are present at high levels. However, little is known about how acidophilic algae evolved from their respective neutrophilic ancestors by adapting to particular acidic environments. To gain insights into this issue, we determined the draft genome sequence of the acidophilic green alga Chlamydomonas eustigma and performed comparative genome and transcriptome analyses between Ceustigma and its neutrophilic relative Chlamydomonas reinhardtii The results revealed the following features in Ceustigma that probably contributed to the adaptation to an acidic environment. Genes encoding heat-shock proteins and plasma membrane H+-ATPase are highly expressed in Ceustigma This species has also lost fermentation pathways that acidify the cytosol and has acquired an energy shuttle and buffering system and arsenic detoxification genes through horizontal gene transfer. Moreover, the arsenic detoxification genes have been multiplied in the genome. These features have also been found in other acidophilic green and red algae, suggesting the existence of common mechanisms in the adaptation to acidic environments.


Assuntos
Adaptação Fisiológica/genética , Chlamydomonas reinhardtii/genética , Genoma de Planta , Proteínas de Plantas/genética , Chlamydomonas reinhardtii/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Plantas/metabolismo
17.
Angew Chem Int Ed Engl ; 59(50): 22721-22730, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32844541

RESUMO

Orientational control of functional molecules is essential to create complex functionalities as seen in nature; however, such artificial systems have remained challenge. Herein, we have succeeded in controlling rotational isomerism of µ-oxo silicon phthalocyanine (SiPc) oligomers to achieve an external-stimuli-responsive orientational ordering using intermolecular interactions of tetrathiafulvalene (TTF). In this system, three modes of orientations, free rotation, eclipsed conformation, and staggered conformation, were interconverted in response to the oxidation states of TTF, which varied interactions from association due to formation of mixed-valence TTF dimer to dissociation due to electrostatic repulsion between TTF dications. Furthermore, a stable performance of oligomers as a cathode material in a Li-ion battery proved that the one-dimensionally stacked, rotatable structure of SiPc oligomers is useful to control the orientation of functional molecules toward molecular electronics.

18.
Angew Chem Int Ed Engl ; 59(20): 7836-7841, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32045508

RESUMO

The concise synthesis of sulfur-enriched graphene for battery applications is reported. The direct treatment of graphene oxide (GO) with the commercially available Lawesson's reagent produced sulfur-enriched-reduced GO (S-rGO). Various techniques, such as X-ray photoelectron spectroscopy (XPS), confirmed the occurrence of both sulfur functionalization and GO reduction. Also fabricated was a nanohybrid material by using S-rGO with polyoxometalate (POM) as a cathode-active material for a rechargeable battery. Transmission electron microscopy (TEM) revealed that POM clusters were individually immobilized on the S-rGO surface. This battery, based on a POM/S-rGO complex, exhibited greater cycling stability for the charge-discharge process than a battery with nanohybrid materials positioned between the POM and nonenriched rGO. These results demonstrate that the use of sulfur-containing groups on a graphene surface can be extended to applications such as the catalysis of electrochemical reactions and electrodes in other battery systems.

19.
Angew Chem Int Ed Engl ; 59(49): 22171-22178, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697410

RESUMO

Herein, we report a comprehensive strategy to synthesize a full range of single-atom metals on carbon matrix, including V, Mn, Fe, Co, Ni, Cu, Ge, Mo, Ru, Rh, Pd, Ag, In, Sn, W, Ir, Pt, Pb, and Bi. The extensive applications of various SACs are manifested via their ability to electro-catalyze typical hydrogen evolution reactions (HER) and conversion reactions in novel room-temperature sodium sulfur batteries (RT-Na-S). The enhanced performances for these electrochemical reactions arisen from the ability of different single active atoms on local structures to tune their electronic configuration. Significantly, the electrocatalytic behaviors of diverse SACs, assisted by density functional theory calculations, are systematically revealed by in situ synchrotron X-ray diffraction and in situ transmission electronic microscopy, providing a strategic library for the general synthesis and extensive applications of SACs in energy conversion and storage.

20.
Plant Cell Physiol ; 60(4): 916-930, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668822

RESUMO

Nutrient-deprived microalgae accumulate triacylglycerol (TAG) in lipid droplets. A dual-specificity tyrosine phosphorylation-regulated kinase, TAG accumulation regulator 1 (TAR1) has been shown to be required for acetate-dependent TAG accumulation and the degradation of chlorophyll and photosynthesis-related proteins in photomixotrophic nitrogen (N)-deficient conditions (Kajikawa et�al. 2015). However, this previous report only examined particular condition. Here, we report that in photoautotrophic N-deficient conditions, tar1-1 cells, with a mutation in the TAR1 gene, maintained higher levels of cell viability and lower levels of hydrogen peroxide generation and accumulated higher levels of TAG and starch compared with those of wild type (WT) cells with bubbling of air containing 5% carbon dioxide. Transcriptomic analyses suggested that genes involved in the scavenging of reactive oxygen species are not repressed in tar1-1 cells. In contrast, the mating efficiency and mRNA levels of key regulatory genes for gametogenesis, MID, MTD and FUS, were suppressed in tar1-1 cells. Among the TAR1-dependent phosphopeptides deduced by phosphoproteomic analysis, protein kinases and enzymes related to N assimilation and carbon (C) metabolism are of particular interest. Characterization of these putative downstream factors may elucidate the molecular pathway whereby TAR1 mediates cellular propagation and C and N metabolism in C/N-imbalanced stress conditions.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Chlamydomonas/metabolismo , Triglicerídeos/metabolismo , Carbono/metabolismo , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Peróxido de Hidrogênio/metabolismo , Nitrogênio/metabolismo , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA