Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Plant Biol ; 20(1): 51, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005156

RESUMO

BACKGROUND: Soybean oil is a major source of edible oil, and the domestication of wild soybean has resulted in significant changes in oil content and composition. Extensive efforts have been made to identify genetic loci that are related to soybean oil traits. The objective of this study was to identify quantitative trait loci (QTLs) related to soybean seed oil and compare the fatty acid composition between wild and cultivated soybean. RESULTS: Using the specific-locus amplified fragment sequencing (SLAF-seq) method, a total of 181 recombinant inbred lines (RILs) derived from a cross between wild soybean ZYD00463 (Glycine soja) and cultivated soybean WDD01514 (Glycine max) were genotyped. Finally, a high-density genetic linkage map comprising 11,398 single-nucleotide polymorphism (SNP) markers on 20 linkage groups (LGs) was constructed. Twenty-four stable QTLs for seed oil content and composition were identified by model-based composite interval mapping (CIM) across multiple environments. Among these QTLs, 23 overlapped with or were adjacent to previously reported QTLs. One QTL, qPA10_1 (5.94-9.98 Mb) on Chr. Ten is a novel locus for palmitic acid. In the intervals of stable QTLs, some interesting genes involved in lipid metabolism were detected. CONCLUSIONS: We developed 181 RILs from a cross between wild soybean ZYD00463 and cultivated soybean WDD01514 and constructed a high-density genetic map using the SLAF-seq method. We identified 24 stable QTLs for seed oil content and compositions, which includes qPA10_1 on Chr. 10, a novel locus for palmitic acid. Some interesting genes in the QTL regions were also detected. Our study will provide useful information for scientists to learn about genetic variations in lipid metabolism between wild and cultivated soybean.


Assuntos
Ácidos Graxos/análise , Glycine max/genética , Sementes/química , Óleo de Soja/química , Produtos Agrícolas/química , Produtos Agrícolas/genética , Locos de Características Quantitativas , Sementes/genética , Óleo de Soja/genética , Glycine max/química
2.
Plant Biotechnol J ; 18(2): 389-401, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31278885

RESUMO

Landraces often contain genetic diversity that has been lost in modern cultivars, including alleles that confer enhanced local adaptation. To comprehensively identify loci associated with adaptive traits in soya bean landraces, for example flowering time, a population of 1938 diverse landraces and 97 accessions of the wild progenitor of cultivated soya bean, Glycine soja was genotyped using tGBS® . Based on 99 085 high-quality SNPs, landraces were classified into three sub-populations which exhibit geographical genetic differentiation. Clustering was inferred from STRUCTURE, principal component analyses and neighbour-joining tree analyses. Using phenotypic data collected at two locations separated by 10 degrees of latitude, 17 trait-associated SNPs (TASs) for flowering time were identified, including a stable locus Chr12:5914898 and previously undetected candidate QTL/genes for flowering time in the vicinity of the previously cloned flowering genes, E1 and E2. Using passport data associated with the collection sites of the landraces, 27 SNPs associated with adaptation to three bioclimatic variables (temperature, daylength, and precipitation) were identified. A series of candidate flowering genes were detected within linkage disequilibrium (LD) blocks surrounding 12 bioclimatic TASs. Nine of these TASs exhibit significant differences in flowering time between alleles within one or more of the three individual sub-populations. Signals of selection during domestication and/or subsequent landrace diversification and adaptation were detected at 38 of the 44 flowering and bioclimatic TASs. Hence, this study lays the groundwork to begin breeding for novel environments predicted to arise following global climate change.


Assuntos
Adaptação Fisiológica , Genes de Plantas , Estudo de Associação Genômica Ampla , Glycine max , Adaptação Fisiológica/genética , Alelos , Genes de Plantas/genética , Genótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Glycine max/genética
3.
Int J Mol Sci ; 18(9)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832544

RESUMO

Sucrose non-fermenting-1 (SNF1)-related protein kinase 2s (SnRK2s) that were reported to be involved in the transduction of abscisic acid (ABA) signaling, play important roles in response to biotic and abiotic stresses in plants. Compared to the systemic investigation of SnRK2s in Arabidopsisthaliana and Oryza sativa, little is known regarding SnRK2s in soybean, which is one of the most important oil and protein crops. In the present study, we performed genome-wide identification and characterization of GmSnRK2s in soybean. In summary, 22 GmSnRK2s were identified and clustered into four groups. Phylogenetic analysis indicated the expansion of SnRK2 gene family during the evolution of soybean. Various cis-acting elements such as ABA Response Elements (ABREs) were identified and analyzed in the promoter regions of GmSnRK2s. The results of RNA sequencing (RNA-Seq) data for different soybean tissues showed that GmSnRK2s exhibited spatio-temporally specific expression patterns during soybean growth and development. Certain GmSnRK2s could respond to the treatments including salinity, ABA and strigolactones. Our results provide a foundation for the further elucidation of the function of GmSnRK2 genes in soybean.


Assuntos
Glycine max/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta , Salinidade , Glycine max/efeitos dos fármacos , Glycine max/enzimologia , Glycine max/metabolismo , Estresse Fisiológico
5.
Theor Appl Genet ; 127(8): 1733-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913363

RESUMO

KEY MESSAGE: A new thermo-sensitive dominant genic male sterility (TSDGMS) line of Brassica napus was found and mapped in this paper. Our result will greatly accelerate the map-based cloning of the BntsMs gene. TE5A is a thermo-sensitive dominant genic male sterility line originating from spontaneous mutation of the inbred line TE5 in Brassica napus and provides a promising system for the development of hybrid cultivars. Genetic analysis has revealed that the BntsMs mutant is controlled by a single, dominant gene. Here, we describe the fine mapping of BntsMs using amplified fragment length polymorphism (AFLP) and intron polymorphism (IP) methodologies. We screened 1,024 primer combinations and then identified five AFLP markers linked to the BntsMs gene, two of which were successfully converted into sequence-characterised amplified region (SCAR) markers. The linkage of the markers was identified by analysing a large BC2 population of 700 recessive-fertility individuals. Two SCAR markers were found in the flanking region of the BntsMs gene at distance of 3.5 and 4.8 cm. Based on sequence information from the previously screened AFLP markers and on genome organisation comparisons of the A genome of Brassica rapa and Arabidopsis, seven IP markers linked to the BntsMs gene were developed. By analysing the 700 recessive-fertility individuals, two IP markers, IP004 and IP470, were localised to the flanking region of the BntsMs gene at a distance of 0.3 and 0.2 cm, respectively. A comparison of the B. rapa and Arabidopsis genomes revealed 27 genes of B. rapa in the flanking region of these two IP markers. It is likely that the molecular markers developed from these investigations will greatly accelerate the positional cloning of the BntsMs gene.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Brassica napus/genética , Brassica rapa/genética , Genes Dominantes , Genes de Plantas , Mapeamento Físico do Cromossomo , Infertilidade das Plantas/genética , Flores/anatomia & histologia , Marcadores Genéticos , Mutação/genética , Reação em Cadeia da Polimerase , Temperatura
6.
Mol Plant Pathol ; 20(2): 270-286, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30264924

RESUMO

Rhg1 (resistance to Heterodera glycines 1) is an important locus that contributes to resistance against soybean cyst nematode (SCN; Heterodera glycines Ichinohe), which is the most economically damaging disease of soybean worldwide. Simultaneous overexpression of three genes encoding a predicted amino acid transporter, an α-soluble N-ethylmaleimide-sensitive factor attachment protein (α-SNAP) and a predicted wound-induced protein resulted in resistance to SCN provided by this locus. However, the roles of two of these genes (excluding α-SNAP) remain unknown. Here, we report the functional characterization of Glyma.18G022400, a gene at the Rhg1 locus that encodes the predicted amino acid transporter Rhg1-GmAAT. Although the direct role of Rhg1-GmAAT in glutamate transport was not demonstrated, multiple lines of evidence showed that Rhg1-GmAAT impacts glutamic acid tolerance and glutamate transportation in soybean. Transcriptomic and metabolite profiling indicated that overexpression of Rhg1-GmAAT activated the jasmonic acid (JA) pathway. Treatment with a JA biosynthesis inhibitor reduced the resistance provided by the Rhg1-containing PI88788 to SCN, which suggested that the JA pathway might play a role in Rhg1-mediated resistance to SCN. Our results could be helpful for the clarification of the mechanism of resistance to SCN provided by Rhg1 in soybean.


Assuntos
Ciclopentanos/farmacologia , Glycine max/parasitologia , Oxilipinas/farmacologia , Tylenchoidea/patogenicidade , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Resistência à Doença/efeitos dos fármacos , Glutamatos/metabolismo , Doenças das Plantas/microbiologia , Glycine max/metabolismo , Tylenchoidea/metabolismo
7.
Front Plant Sci ; 9: 631, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868085

RESUMO

Molecular breeding has become an important approach for crop improvement, and a prerequisite for molecular breeding is elucidation of the functions of genetic loci or genes. Soybean is one of the most important food and oil crops worldwide. However, due to the difficulty of genetic transformation in soybean, studies of its functional genomics lag far behind those of other crops such as rice, which severely impairs the progress of molecular improvement in soybean. Here, we describe an effective large-scale strategy to investigate the functions of soybean genes via overexpression of a full-length soybean cDNA library in Arabidopsis. The overexpression vector pJL12 was modified for use in the construction of a normalized full-length cDNA library. The constructed cDNA library showed good quality; repetitive clones represented approximately 4%, insertion fragments were approximately 2.2 kb, and the full-length rate was approximately 98%. This cDNA library was then overexpressed in Arabidopsis, and approximately 2000 transgenic lines were preliminarily obtained. Phenotypic analyses of the positive T1 transgenic plants showed that more than 5% of the T1 transgenic lines displayed abnormal developmental phenotypes, and approximately 1% of the transgenic lines exhibited potentially favorable traits. We randomly amplified 4 genes with obvious phenotypes (enlarged seeds, yellowish leaves, more branches, and dense siliques) and repeated the transgenic analyses in Arabidopsis. Subsequent phenotypic observation demonstrated that these phenotypes were indeed due to the overexpression of soybean genes. We believe our strategy represents an effective large-scale approach to investigate the functions of soybean genes and further reveal genes favorable for molecular improvement in soybean.

8.
Sci Rep ; 7(1): 5636, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717203

RESUMO

Circular RNAs (circRNAs) arise during pre-mRNA splicing, in which the 3' and 5' ends are linked to each other by a covalent bond. Soybean is an ancient tetraploid, which underwent two whole genome duplications. Most of soybean genes are paralogous genes with multiple copies. Although many circRNAs have been identified in animals and plants, little is known about soybean circRNAs, especially about circRNAs derived from paralogous genes. Here, we used deep sequencing technology coupled with RNase R enrichment strategy and bioinformatic approach to uncover circRNAs in soybean. A total of 5,372 circRNAs were identified, approximately 80% of which were paralogous circRNAs generated from paralogous genes. Despite high sequence homology, the paralogous genes could produce different paralogous circRNAs with different expression patterns. Two thousand and one hundred thirty four circRNAs were predicted to be 92 miRNAs target mimicry. CircRNAs and circRNA isoforms exhibited tissue-specific expression patterns in soybean. Based on the function of circRNA-host genes, the soybean circRNAs may participate in many biological processes such as developmental process, multi-organism process, and metabolic process. Our study not only provided a basis for research into the function of circRNAs in soybean but also new insights into the plant circRNA kingdom.


Assuntos
Glycine max/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Especificidade de Órgãos , RNA Circular , RNA de Plantas/genética
9.
Sci Rep ; 7: 46552, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422166

RESUMO

Cleome gynandra and Cleome hassleriana, which are C4 and C3 plants, respectively, are two species of Cleome. The close genetic relationship between C. gynandra and C. hassleriana provides advantages for discovering the differences in leaf development and physiological processes between C3 and C4 plants. MicroRNAs (miRNAs) are a class of important regulators of various biological processes. In this study, we investigate the differences in the characteristics of miRNAs between C. gynandra and C. hassleriana using high-throughput sequencing technology. In total, 94 and 102 known miRNAs were identified in C. gynandra and C. hassleriana, respectively, of which 3 were specific for C. gynandra and 10 were specific for C. hassleriana. Ninety-one common miRNAs were identified in both species. In addition, 4 novel miRNAs were detected, including three in C. gynandra and three in C. hassleriana. Of these miRNAs, 67 were significantly differentially expressed between these two species and were involved in extensive biological processes, such as glycol-metabolism and photosynthesis. Our study not only provided resources for C. gynandra and C. hassleriana research but also provided useful clues for the understanding of the roles of miRNAs in the alterations of biological processes in leaf tissues during the evolution of the C4 pathway.


Assuntos
Cleome , Regulação da Expressão Gênica de Plantas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs , Folhas de Planta , RNA de Plantas , Cleome/classificação , Cleome/genética , Cleome/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA de Plantas/biossíntese , RNA de Plantas/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA