Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(5): 1281-1295.e18, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863244

RESUMO

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.


Assuntos
Glioblastoma/genética , Glioblastoma/patologia , Invasividade Neoplásica/genética , Proteína Wnt-5a/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Epigenômica , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Fator de Transcrição PAX6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo
2.
Mol Cell ; 82(20): 3919-3931.e7, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270249

RESUMO

Cancer-specific TERT promoter mutations have been linked to the reactivation of epigenetically silenced TERT gene by creating de novo binding motifs for E-Twenty-Six transcription factors, especially GABPA. How these mutations switch on TERT from epigenetically repressed states to expressed states have not been defined. Here, we revealed that EGFR activation induces ERK1/2-dependent phosphorylation of argininosuccinate lyase (ASL) at Ser417 (S417), leading to interactions between ASL and GABPA at the mutant regions of TERT promoters. The ASL-generated fumarate inhibits KDM5C, leading to enhanced trimethylation of histone H3 Lys4 (H3K4me3), which in turn promotes the recruitment of c-Myc to TERT promoters for TERT expression. Expression of ASL S417A, which abrogates its binding with GABPA, results in reduced TERT expression, inhibited telomerase activity, shortened telomere length, and impaired brain tumor growth in mice. This study reveals an unrecognized mechanistic insight into epigenetically activation of mutant TERT promoters where GABPA-interacted ASL plays an instrumental role.


Assuntos
Glioblastoma , Telomerase , Animais , Camundongos , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Fumaratos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Histonas/genética , Histonas/metabolismo , Mutação , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Encurtamento do Telômero , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas
3.
Mol Cell ; 76(6): 885-895.e7, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31629659

RESUMO

Hypoxia, which occurs during tumor growth, triggers complex adaptive responses in which peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) plays a critical role in mitochondrial biogenesis and oxidative metabolism. However, how PGC-1α is regulated in response to oxygen availability remains unclear. We demonstrated that lysine demethylase 3A (KDM3A) binds to PGC-1α and demethylates monomethylated lysine (K) 224 of PGC-1α under normoxic conditions. Hypoxic stimulation inhibits KDM3A, which has a high KM of oxygen for its activity, and enhances PGC-1α K224 monomethylation. This modification decreases PGC-1α's activity required for NRF1- and NRF2-dependent transcriptional regulation of TFAM, TFB1M, and TFB2M, resulting in reduced mitochondrial biogenesis. Expression of PGC-1α K224R mutant significantly increases mitochondrial biogenesis, reactive oxygen species (ROS) production, and tumor cell apoptosis under hypoxia and inhibits brain tumor growth in mice. This study revealed that PGC-1α monomethylation, which is dependent on oxygen availability-regulated KDM3A, plays a critical role in the regulation of mitochondrial biogenesis.


Assuntos
Neoplasias Encefálicas/enzimologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mitocôndrias/enzimologia , Biogênese de Organelas , Oxigênio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Carga Tumoral , Hipóxia Tumoral , Microambiente Tumoral
4.
Mol Cell ; 76(3): 516-527.e7, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31492635

RESUMO

The PTEN tumor suppressor is frequently mutated or deleted in cancer and regulates glucose metabolism through the PI3K-AKT pathway. However, whether PTEN directly regulates glycolysis in tumor cells is unclear. We demonstrate here that PTEN directly interacts with phosphoglycerate kinase 1 (PGK1). PGK1 functions not only as a glycolytic enzyme but also as a protein kinase intermolecularly autophosphorylating itself at Y324 for activation. The protein phosphatase activity of PTEN dephosphorylates and inhibits autophosphorylated PGK1, thereby inhibiting glycolysis, ATP production, and brain tumor cell proliferation. In addition, knockin expression of a PGK1 Y324F mutant inhibits brain tumor formation. Analyses of human glioblastoma specimens reveals that PGK1 Y324 phosphorylation levels inversely correlate with PTEN expression status and are positively associated with poor prognosis in glioblastoma patients. This work highlights the instrumental role of PGK1 autophosphorylation in its activation and PTEN protein phosphatase activity in governing glycolysis and tumorigenesis.


Assuntos
Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Glucose/metabolismo , Glicólise , PTEN Fosfo-Hidrolase/metabolismo , Fosfoglicerato Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , PTEN Fosfo-Hidrolase/genética , Fosfoglicerato Quinase/genética , Fosforilação , Prognóstico , Transdução de Sinais , Fatores de Tempo , Carga Tumoral , Tirosina
6.
Anal Chem ; 96(25): 10200-10209, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38867357

RESUMO

Rapid tissue differentiation at the molecular level is a prerequisite for precise surgical resection, which is of special value for the treatment of malignant tumors, such as glioblastoma (GBM). Herein, a SERS-active microneedle is prepared by modifying glutathione (GSH)-responsive molecules, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), on the surface of Au@Ag substrates for the distinction of different GBM tissues. Since the Raman signals on the surface of the DTNB@Au@Ag microneedle can be collected by both portable and benchtop Raman spectrometers, the distribution of GSH in different tissues at centimeter scale can be displayed through Raman spectroscopy and Raman imaging, and the entire analysis process can be accomplished within 12 min. Accordingly, in vivo brain tissues of orthotopic GBM xenograft mice and ex vivo tissues of GBM patients are accurately differentiated with the microneedle, and the results are well consistent with tissue staining and postoperative pathological reports. In addition, the outline of tumor, peritumoral, and normal tissues can be indicated by the DTNB@Au@Ag microneedle for at least 56 days. Considering that the tumor tissues are quickly discriminated at the molecular level without the restriction of depth, the DTNB@Au@Ag microneedle is promising to be a powerful intraoperative diagnostic tool for surgery navigation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glutationa , Ouro , Análise Espectral Raman , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/diagnóstico por imagem , Animais , Humanos , Glutationa/análise , Glutationa/metabolismo , Ouro/química , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Agulhas , Prata/química , Camundongos Nus , Ácido Ditionitrobenzoico/química , Linhagem Celular Tumoral , Nanopartículas Metálicas/química
7.
J Am Chem Soc ; 145(10): 5930-5940, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867864

RESUMO

The crossing of blood-brain barrier (BBB) is essential for glioblastoma (GBM) therapy, and homotypic targeting is an effective strategy to achieve BBB crossing. In this work, GBM patient-derived tumor cell membrane (GBM-PDTCM) is prepared to cloak gold nanorods (AuNRs). Relying on the high homology of the GBM-PDTCM to the brain cell membrane, GBM-PDTCM@AuNRs realize efficient BBB crossing and selective GBM targeting. Meanwhile, owing to the functionalization of Raman reporter and lipophilic fluorophore, GBM-PDTCM@AuNRs are able to generate fluorescence and Raman signals at GBM lesion, and almost all tumor can be precisely resected in 15 min by the guidance of dual signals, ameliorating the surgical treatment for advanced GBM. In addition, photothermal therapy for orthotopic xenograft mice is accomplished by intravenous injection of GBM-PDTCM@AuNRs, doubling the median survival time of the mice, which improves the nonsurgical treatment for early GBM. Therefore, benefiting from homotypic membrane-enhanced BBB crossing and GBM targeting, all-stage GBM can be treated with GBM-PDTCM@AuNRs in distinct ways, providing an alternative idea for the therapy of tumor in the brain.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Barreira Hematoencefálica/metabolismo , Terapia Fototérmica , Membrana Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
8.
Mol Ther ; 30(7): 2568-2583, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351656

RESUMO

Proneural (PN) to mesenchymal (MES) transition (PMT) is a crucial phenotypic shift in glioblastoma stem cells (GSCs). However, the mechanisms driving this process remain poorly understood. Here, we report that Fos-like antigen 1 (FOSL1), a component of AP1 transcription factor complexes, is a key player in regulating PMT. FOSL1 is predominantly expressed in the MES subtype, but not PN subtype, of GSCs. Knocking down FOSL1 expression in MES GSCs leads to the loss of MES features and tumor-initiating ability, whereas ectopic expression of FOSL1 in PN GSCs is able to induce PMT and maintain MES features. Moreover, FOSL1 facilitates ionizing radiation (IR)-induced PMT and radioresistance of PN GSCs. Inhibition of FOSL1 enhances the anti-tumor effects of IR by preventing IR-induced PMT. Mechanistically, we find that FOSL1 promotes UBC9-dependent CYLD SUMOylation, thereby inducing K63-linked polyubiquitination of major nuclear factor κB (NF-κB) intermediaries and subsequent NF-κB activation, which results in PMT induction in GSCs. Our study underscores the importance of FOSL1 in the regulation of PMT and suggests that therapeutic targeting of FOSL1 holds promise to attenuate molecular subtype switching in patients with glioblastomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Mesenquimais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Enzima Desubiquitinante CYLD/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/metabolismo , Radiação Ionizante , Enzimas de Conjugação de Ubiquitina/metabolismo
9.
J Comput Assist Tomogr ; 47(1): 129-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36194851

RESUMO

OBJECTIVE: Recurrence is a major factor in the poor prognosis of patients with glioma. The aim of this study was to predict glioma recurrence using machine learning based on radiomic features. METHODS: We recruited 77 glioma patients, consisting of 57 newly diagnosed patients and 20 patients with recurrence. After extracting the radiomic features from T2-weighted images, the data set was randomly divided into training (58 patients) and testing (19 patients) cohorts. An automated machine learning method (the Tree-based Pipeline Optimization Tool) was applied to generate 10 independent recurrence prediction models. The final model was determined based on the area under the curve (AUC) and average specificity. Moreover, an independent validation set of 20 patients with glioma was used to verify the model performance. RESULTS: Recurrence in glioma patients was successfully predicting by machine learning using radiomic features. Among the 10 recurrence prediction models, the best model achieved an accuracy of 0.81, an AUC value of 0.85, and a specificity of 0.69 in the testing cohort, but an accuracy of 0.75 and an AUC value of 0.87 in the independent validation set. CONCLUSIONS: Our algorithm that is generated by machine learning exhibits promising power and may predict recurrence noninvasively, thereby offering potential value for the early development of interventions to delay or prevent recurrence in glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Curva ROC , Glioma/diagnóstico por imagem , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina , Estudos Retrospectivos
10.
Cell Mol Neurobiol ; 41(8): 1651-1663, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32770297

RESUMO

Concussion is a widely recognized environmental risk factor for neurodegenerative diseases, including Parkinson's disease (PD). Small-vessel disease of the brain has been reported to contribute to neurodegenerative diseases. In this study, we observed BBB disruption in wild-type (WT) mice, but not in matrix metalloproteinase 9 (MMP-9) knockout mice, subjected to single severe traumatic brain injury (ssTBI). Furthermore, treating ssTBI mice with the MMP-9 inhibitor GM6001 effectively maintained BBB integrity, promoted the elimination of damaged mitochondria via mitophagy, and then prevented neuronal death and progressive neurodegeneration. However, we did not observe this neuroprotective effect of MMP-9 inhibition in beclin-1-/+ mice. Collectively, these findings revealed that concussion led to BBB disruption via MMP-9, and that GM6001 prevented the development of PD via the autophagy pathway.


Assuntos
Autofagia/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Dipeptídeos/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Autofagia/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/patologia , Dipeptídeos/farmacologia , Feminino , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Índices de Gravidade do Trauma
11.
Pharmacol Res ; 174: 105933, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634471

RESUMO

Ischemic stroke poses a significant health risk due to its high rate of disability and mortality. To address this problem, several therapeutic approaches have been proposed, including interruption targeting programmed cell death (PCD). Ferroptosis is a newly defined PCD characterized by iron-dependent accumulation of lipid peroxidation, and is becoming a promising target for treating numerous diseases. To explore the underlying mechanisms of the initiation and execution of ferroptosis in ischemic stroke, we established stroke models in vivo and in vitro simulating ischemia/reperfusion (I/R) neuronal injury. Different from previous reports on stroke, we tested ferroptosis by measuring the levels of core proteins, such as ACSL4, 15-LOX2, Ferritin and GPX4. In addition, I/R injury induces excessive degradation of ferritin via the autophagy pathway and subsequent increase of free iron in neurons. This phenomenon has recently been termed ferritinophagy and reported to be regulated by nuclear receptor coactivator 4 (NCOA4) in some cell lines. Increased NCOA4 in cytoplasm was detected in our study and then silenced by shRNA to investigate its function. Both in vivo and in vitro, NCOA4 deletion notably abrogated ferritinophagy caused by I/R injury and thus inhibited ferroptosis. Furthermore, we found that NCOA4 was upregulated by ubiquitin specific peptidase 14 (USP14) via a deubiquitination process in damaged neurons, and we found evidence of pharmacological inhibition of USP14 effectively reducing NCOA4 levels to protect neurons from ferritinophagy-mediated ferroptosis. These findings suggest a novel and effective target for treating ischemic stroke.


Assuntos
Ferroptose , Infarto da Artéria Cerebral Média , AVC Isquêmico , Coativadores de Receptor Nuclear , Traumatismo por Reperfusão , Animais , Encéfalo/metabolismo , Células Cultivadas , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , Peroxidação de Lipídeos , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Pirróis/farmacologia , Pirrolidinas/farmacologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo
12.
J Neurosci ; 39(10): 1930-1943, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30626699

RESUMO

Mitochondrial energy production is essential for normal brain function. Traumatic brain injury (TBI) increases brain energy demands, results in the activation of mitochondrial respiration, associated with enhanced generation of reactive oxygen species. This chain of events triggers neuronal apoptosis via oxidation of a mitochondria-specific phospholipid, cardiolipin (CL). One pathway through which cells can avoid apoptosis is via elimination of damaged mitochondria by mitophagy. Previously, we showed that externalization of CL to the mitochondrial surface acts as an elimination signal in cells. Whether CL-mediated mitophagy occurs in vivo or its significance in the disease processes are not known. In this study, we showed that TBI leads to increased mitophagy in the human brain, which was also detected using TBI models in male rats. Knockdown of CL synthase, responsible for de novo synthesis of CL, or phospholipid scramblase-3, responsible for CL translocation to the outer mitochondrial membrane, significantly decreased TBI-induced mitophagy. Inhibition of mitochondrial clearance by 3-methyladenine, mdivi-1, or phospholipid scramblase-3 knockdown after TBI led to a worse outcome, suggesting that mitophagy is beneficial. Together, our findings indicate that TBI-induced mitophagy is an endogenous neuroprotective process that is directed by CL, which marks damaged mitochondria for elimination, thereby limiting neuronal death and behavioral deficits.SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) increases energy demands leading to activation of mitochondrial respiration associated with enhanced generation of reactive oxygen species and resultant damage to mitochondria. We demonstrate that the complete elimination of irreparably damaged organelles via mitophagy is activated as an early response to TBI. This response includes translocation of mitochondria phospholipid cardiolipin from the inner membrane to the outer membrane where externalized cardiolipin mediates targeted protein light chain 3-mediated autophagy of damaged mitochondria. Our data on targeting phospholipid scramblase and cardiolipin synthase in genetically manipulated cells and animals strongly support the essential role of cardiolipin externalization mechanisms in the endogenous reparative plasticity of injured brain cells. Furthermore, successful execution and completion of mitophagy is beneficial in the context of preservation of cognitive functions after TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Cardiolipinas/metabolismo , Mitofagia/fisiologia , Neurônios/metabolismo , Animais , Apoptose/fisiologia , Encéfalo/ultraestrutura , Lesões Encefálicas Traumáticas/patologia , Humanos , Masculino , Membranas Mitocondriais/metabolismo , Neurônios/ultraestrutura , Ratos Sprague-Dawley , Transdução de Sinais
13.
Mol Cancer ; 19(1): 28, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32039732

RESUMO

BACKGROUND: Accumulating evidence shows that long noncoding RNAs (lncRNAs) are important regulator molecules involved in diverse biological processes. Acquired drug resistance is a major challenge in the clinical treatment of glioblastoma (GBM), and lncRNAs have been shown to play a role in chemotherapy resistance. However, the underlying mechanisms by which lncRNA mediates TMZ resistance in GBM remain poorly characterized. METHODS: Quantitative reverse transcription PCR (qRT-PCR) and fluorescence in situ hybridization assays were used to detect small nucleolar RNA host gene 12 (SNHG12) levels in TMZ-sensitive and TMZ-resistant GBM cells and tissues. The effects of SNHG12 on TMZ resistance were investigated through in vitro assays (western blots, colony formation assays, flow cytometry assays, and TUNEL assays). The mechanism mediating the high expression of SNHG12 in TMZ-resistant cells and its relationships with miR-129-5p, mitogen-activated protein kinase 1 (MAPK1), and E2F transcription factor 7 (E2F7) were determined by bioinformatic analysis, bisulfite amplicon sequencing, methylation-specific PCR, dual luciferase reporter assays, chromatin immunoprecipitation assays, RNA immunoprecipitation assays, immunofluorescence, qRT-PCR, and western blot. For in vivo experiments, an intracranial xenograft tumor mouse model was used to investigate SNHG12 function. RESULTS: SNHG12 was upregulated in TMZ-resistant cells and tissues. Overexpression of SNHG12 led to the development of acquired TMZ resistance, while knockdown of SNHG12 restored TMZ sensitivity. An abnormally low level of DNA methylation was detected within the promoter region of SNHG12, and loss of DNA methylation made this region more accessible to the Sp1 transcription factor (SP1); this indicated that methylation and SP1 work together to regulate SNHG12 expression. In the cytoplasm, SNHG12 served as a sponge for miR-129-5p, leading to upregulation of MAPK1 and E2F7 and endowing the GBM cells with TMZ resistance. Disinhibition of MAPK1 regulated TMZ-induced cell apoptosis and the G1/S cell cycle transition by activating the MAPK/ERK pathway, while E2F7 dysregulation was primarily associated with G1/S cell cycle transition. Clinically, SNHG12 overexpression was associated with poor survival of GBM patients undergoing TMZ treatment. CONCLUSION: Our results suggest that SNHG12 could serve as a promising therapeutic target to surmount TMZ resistance, thereby improving the clinical efficacy of TMZ chemotherapy.


Assuntos
Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição E2F7/metabolismo , Glioblastoma/patologia , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , RNA Longo não Codificante/genética , Temozolomida/farmacologia , Animais , Antineoplásicos Alquilantes/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Fator de Transcrição E2F7/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Cell Int ; 20: 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158359

RESUMO

BACKGROUND: Glucose metabolic reprogramming is a significant hallmark of malignant tumors including GBM. Previous studies suggest that microRNAs play key roles in modulating this process in GBM cells. miR-181b acts as a tumor suppressor miRNA in influencing glioma tumorigenesis. Our previous results showed that miR-181b was down-regulated in glioma cells and tissues. METHODS: The extracellular acidification rate (ECAR), colony formation assay and levels of Glut1 and PKM2 were measured to assess the glucose metabolic and proliferation changes in GBM cells overexpressing miR-181b. Immunoblotting and luciferase reporter assay were performed to confirm the expression and role of SP1 as a direct target of miR-181b. ChIP assay was used to figure out the transcriptional regulation of SP1 on Glut1 and PKM2. In vivo study was examined for the role of miR-181b in GBM cells. RESULTS: MiR-181b overexpression significantly reduced the glucose metabolic and colony formation ability of GBM cells. And, SP1 was confirmed as a direct target of miR-181b while upregulation of SP1 could reverse the influence of overexpression of miR-181b. Furthermore, Glut1 and PKM2 could be regulated by SP1. Finally, miR-181b could inhibit the tumor growth in vivo. CONCLUSIONS: Our article demonstrated the inhibitory effect of miR-181b on glucose metabolism and proliferation in GBM by suppressing SP1 expression.

15.
Invest New Drugs ; 37(6): 1177-1186, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30847721

RESUMO

The dyskeratosis congenita 1 (DKC1) gene is located on the X chromosome at Xq28. Dyskerin encoded by the DKC1 gene is associated with the formation of certain small RNAs and the telomerase activity. Inherited mutations in DKC1 inactivate the dyskerin and causes dyskeratosis congenital, which is characterized by skin defects, hematopoiesis failure, and increased susceptibility to cancer. DKC1 reportedly up-regulates in several human cancers, including renal cell carcinoma and prostate cancer. Dyskerin is deregulated in B-chronic lymphocytic leukemia and breast carcinomas, but its expression and function in glioma have hardly been investigated. Hence, we were prompted to collect tissue samples and implement cell experiments. Our study reveals that DKC1 expression is significantly increased in the pathological tissues of glioma compared with that in normal tissues. The increased staining of DKC1 is related to the World Health Organization stages of tumors. DKC1 knockdown also significantly inhibits glioma cell growth by altering the expression of cell cycle-relative molecules to arrest at the G1 phase. In the transwell chamber, DKC1 knockdown glioma cells exhibit low motility. Consistent with classic oncogenic pathways, N-cadherin, HIF-1α, and MMP2 expression levels are lower compared with those of the control group. Therefore, DKC1 up-regulation in gliomas is common and necessary for extensive tumor growth. The phenotype of glioma cell lines after DKC1 down-regulation suggests its use as a valuable clinical treatment strategy.


Assuntos
Neoplasias Encefálicas , Proteínas de Ciclo Celular , Glioma , Proteínas Nucleares , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Glioma/genética , Glioma/metabolismo , Glioma/mortalidade , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
16.
J Cell Biochem ; 119(6): 4540-4547, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29323737

RESUMO

Among the malignant tumors of the human central nervous system, gliomas have the highest incidence and recurrence rate. Therefore, exploration of the molecular mechanism that underlies the development and progression of gliomas is of great clinical significance. Many studies have demonstrated that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play important roles in the development and progression of tumors. In the present study, both an RNAhybrid analysis and a dual-luciferase reporter gene assay confirmed that microRNA-15b (miR-15b) binding sites were present in the sequence of HOX transcript antisense RNA (HOTAIR). The present study further demonstrated that miR-15b, HOTAIR, and p53 formed a mutually regulated loop. MiR-15b upregulated the expression of p53 but inhibited the expression of HOTAIR. In addition, miR-15b was able to regulate the expression of HOTAIR through p53. P53 promoted miR-15b expression but inhibited HOTAIR expression. Furthermore, the examination of cell proliferation, apoptosis, and invasion revealed that both miR-15b and p53 inhibited the proliferation and invasion, but promoted the apoptosis, of glioma cells. In contrast, HOTAIR exerted effects that were the opposite of those exerted by miR-15b and p53 on glioma cells. The upregulation of HOTAIR suppressed the inhibitory effects of miR-15b and p53 on cell proliferation and invasion as well as the promoting effect of miR-15b and p53 on apoptosis. Therefore, it can be concluded that miR-15b, HOTAIR, and p53 constitute a regulatory loop that is capable of regulating the growth of glioma cells. This finding provides a new target for the treatment of gliomas.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , MicroRNAs/biossíntese , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , Proteína Supressora de Tumor p53/biossíntese , Apoptose , Proliferação de Células , Glioma/genética , Glioma/patologia , Humanos , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
17.
Cell Physiol Biochem ; 50(1): 233-245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30282068

RESUMO

BACKGROUND/AIMS: Glioma is one of the most devasting tumors and confers dismal prognosis. Long noncoding RNAs(lncRNAs) have emerged as important regulators in various tumors including glioma. A classic lncRNA-H19, which is found to be highly expressed in human glioma tissues and cell lines, and is associated with tumor progression thus predicating clinical outcomes in glioma patients. However, the overall biological functions and their mechanism of H19 in glioma are not fully understood. METHODS: Firstly, we analyzed H19 alterations in different grades of glioma tissues through an analysis of 5 sequencing datasets and qRT-PCR was performed to confirm the results. Next, we evaluated the effect of H19 on glioma cells migration, invasion and EMT process. Luciferase assays and RIP assays were employed to figure out the correlation of H19 and SOX4. RESULTS: H19 was overexpressed in glioma tissues. Down-regulation of H19 led to the inhibition of migration, invasion and EMT process with a reduction in N-cadherin and Vimentin. H19 and SOX4 are both direct target of miR-130a-3p. H19 could compete with SOX4 via sponging miR-130a-3p. CONCLUSION: Taken together, these results provide a possible function of H19 as an oncogene in glioma tissues and provide a potential new therapeutic strategy for human glioma.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Vimentina/metabolismo
18.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2957-2971, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29894755

RESUMO

Phospholipase A2 is a known aggravator of inflammation and deteriorates neurological outcomes after traumatic brain injury (TBI), however the exact inflammatory mechanisms remain unknown. This study investigated the role of bradykinin and its receptor, which are known initial mediators within inflammation activation, as well as the mechanisms of the cytosolic phospholipase A2 (cPLA2)-related inflammatory responses after TBI. We found that cPLA2 and bradykinin B2 receptor were upregulated after a TBI. Rats treated with the bradykinin B2 receptor inhibitor LF 16-0687 exhibited significantly less cPLA2 expression and related inflammatory responses in the brain cortex after sustaining a controlled cortical impact (CCI) injury. Both the cPLA2 inhibitor and the LF16-0687 improved CCI rat outcomes by decreasing neuron death and reducing brain edema. The following TBI model utilized both primary astrocytes and primary neurons in order to gain further understanding of the inflammation mechanisms of the B2 bradykinin receptor and the cPLA2 in the central nervous system. There was a stronger reaction from the astrocytes as well as a protective effect of LF16-0687 after the stretch injury and bradykinin treatment. The protein kinase C pathway was thought to be involved in the B2 bradykinin receptor as well as the cPLA2-related inflammatory responses. Rottlerin, a Protein Kinase C (PKC) δ inhibitor, decreased the activity of the cPLA2 activity post-injury, and LF16-0687 suppressed both the PKC pathway and the cPLA2 activity within the astrocytes. These results indicated that the bradykinin B2 receptor-mediated pathway is involved in the cPLA2-related inflammatory response from the PKC pathway.


Assuntos
Bradicinina/metabolismo , Lesões Encefálicas Traumáticas/patologia , Inflamação/patologia , Fosfolipases A2 Citosólicas/metabolismo , Receptor B2 da Bradicinina/metabolismo , Acetofenonas/farmacologia , Adulto , Idoso , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Benzopiranos/farmacologia , Bradicinina/administração & dosagem , Bradicinina/sangue , Bradicinina/líquido cefalorraquidiano , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/etiologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epilepsia/líquido cefalorraquidiano , Epilepsia/patologia , Feminino , Humanos , Inflamação/sangue , Inflamação/líquido cefalorraquidiano , Inflamação/etiologia , Masculino , Pessoa de Meia-Idade , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima , Adulto Jovem
19.
Cell Physiol Biochem ; 44(4): 1616-1628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29212066

RESUMO

BACKGROUND: Gliomas result in the highest morbidity and mortality rates of intracranial primary central nervous system tumors because of their aggressive growth characteristics and high postoperative recurrence. They are characterized by genetic instability, intratumoral histopathological variability and unpredictable clinical behavior in patients. Proliferation is a key aspect of the clinical progression of malignant gliomas, complicating complete surgical resection and enabling tumor regrowth and further proliferation of the surviving tumor cells. METHODS: The expression of Fstl1 was detected by western blotting and qRT-PCR. We used cell proliferation and colony formation assays to measure proliferation. Then, flow cytometry was used to analyze cell cycle progression. The expression of Fstl1, p-Smad1/5/8 and p21 in GBM tissue sections was evaluated using immunohistochemical staining. Furthermore, we used coimmunoprecipitation (Co-IP) and immunoprecipitation to validate the relationship between Fstl1, BMP4 and BMPR2. Finally, we used orthotopic xenograft studies to measure the growth of tumors in vivo. RESULTS: We found that follistatin-like 1 (Fstl1) was upregulated in high-grade glioma specimens and that its levels correlated with poor prognosis. Fstl1 upregulation increased cell proliferation, colony formation and cell cycle progression, while its knockdown inhibited these processes. Moreover, Fstl1 interacted with bone morphogenetic protein (BMP) 4, but not BMP receptor (BMPR) 2, and competitively inhibited their association. Furthermore, Fstl1 overexpression suppressed the activation of the BMP4/Smad1/5/8 signaling pathway, while BMP4 overexpression reversed this effect. CONCLUSION: Our study demonstrated that Fstl1 promoted glioma growth through the BMP4/Smad1/5/8 signaling pathway, and these findings suggest potential new glioblastoma treatment strategies.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Neoplasias Encefálicas/patologia , Proteínas Relacionadas à Folistatina/metabolismo , Glioma/patologia , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Proteínas Relacionadas à Folistatina/antagonistas & inibidores , Proteínas Relacionadas à Folistatina/genética , Glioma/metabolismo , Glioma/mortalidade , Humanos , Imunoprecipitação , Estimativa de Kaplan-Meier , Camundongos , Fosforilação , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Transdução de Sinais , Transplante Heterólogo
20.
Genome Res ; 24(11): 1765-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25135958

RESUMO

Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Glioma/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Adolescente , Adulto , Idoso , Antineoplásicos Alquilantes , Western Blotting , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Quimiorradioterapia , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/secundário , Glioma/patologia , Glioma/terapia , Células HEK293 , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Temozolomida , Translocação Genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA