RESUMO
Obesity and its associated metabolic disease do serious harm to human health. The transcriptional cascade network with transcription factors as the core is the focus of current research on adipogenesis and its mechanism. Previous studies have found that HMG domain protein 20A (HMG20A) is highly expressed in the early stage of adipogenic differentiation of porcine intramuscular fat (IMF), which may be involved in regulating adipogenesis. In this study, HMG20A was found to play a key negative regulatory role in adipogenesis. Gain- and loss-of-function studies revealed that HMG20A inhibited the differentiation of SVF cells and C3H10T1/2 cells into mature adipocytes. RNA-seq was used to screen differentially expressed genes after HMG20A knockdown. qRT-PCR and ChIP-PCR confirmed that MEF2C was the real target of HMG20A, and HMG20A played a negative regulatory role through MEF2C. HMG20A binding protein LSD1 was found to alleviate the inhibitory effect of HMG20A on adipogenesis. Further studies showed that HMG20A could cooperate with LSD1 to increase the H3K4me2 of the MEF2C promoter and then increase the expression of MEF2C. Collectively, these findings highlight a role for HMG20A-dependent transcriptional and epigenetic regulation in adipogenesis.
Assuntos
Adipócitos , Adipogenia , Adipócitos/metabolismo , Adipogenia/genética , Animais , Diferenciação Celular/genética , Epigênese Genética , Proteínas de Grupo de Alta Mobilidade/genética , Histona Desmetilases/genética , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Suínos , Fatores de Transcrição/metabolismoRESUMO
The growth and development of skeletal muscle is regulated by many factors, and recent studies have shown that circular RNAs (circRNAs) can participate in this process. The model of porcine skeletal muscle injury was constructed to search for circRNAs that can regulate the growth and development of skeletal muscle in pigs. Using whole-transcriptome sequencing and bioinformatics analysis, a novel circRNA (circCSDE1) was screened out, which is highly expressed in skeletal muscle. Functional studies in C2C12 cells demonstrated that circCSDE1 could promote proliferation and inhibit myoblast differentiation, while opposing changes were observed by circCSDE1 knockdown. A dual-luciferase reporter assay revealed that circCSDE1 directly targeted miR-21-3p to regulate the expression of the downstream target gene (Cyclin-dependent kinase 16, CDK16). Moreover, miR-21-3p could inhibit proliferation and promote myoblast differentiation in C2C12 cells, opposite with the effects of circCSDE1. Additionally, the rescue experiments offered further evidence that circCSDE1 and its target, miR-21-3p, work together to regulate myoblast proliferation and differentiation. This study provides a theoretical basis for further understanding the regulatory mechanisms of circRNAs.
Assuntos
MicroRNAs , RNA Circular , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Quinases Ciclina-Dependentes/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , RNA Circular/genética , SuínosRESUMO
Inflammation accompanies hepatic dysfunction resulting from tissue oxidative damage. Naringenin (Nar), a natural flavanone, has known antioxidant and anti-inflammatory activities, but its mechanism of action in the regulation of liver dysfunction requires further investigation. In this study, the role of naringenin in lipopolysaccharide (LPS)-induced hepatic oxidative stress and inflammation was explored, as well as its mechanism by transcriptome sequencing. The results indicated that compared with the LPS group, Nar treatment caused a significant increase in the mRNA levels of antioxidant factors glutamate-cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase modifier subunit (GCLM), yet the expression of related inflammatory factors (MCP1, TNFα, IL-1ß and IL-6) showed less of an increase. RNA sequencing identified 36 differentially expressed lncRNAs and 603 differentially expressed mRNAs. KEGG enrichment analysis indicated that oxidative stress and inflammation pathways are meticulously linked with naringenin treatment. The Co-lncRNA-mRNA network was also constructed. Tissue expression profiles showed that lncRNA played a higher role in the liver. Subsequently, expression levels of inflammatory factors indicated that lncRNAs and target mRNAs were significantly reduced after naringenin treatment in mouse liver AML12 cells and obese mouse. These results suggest that naringenin helps to prevent liver dysfunction through the regulation of lncRNA-mRNA axis to reduce oxidative stress and inflammatory factors.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Flavanonas , Hepatopatias , RNA Longo não Codificante , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Glutamato-Cisteína Ligase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Estresse Oxidativo , Flavanonas/farmacologiaRESUMO
Uncoupling protein 3 (Ucp3) is an important transporter within mitochondria and is mainly expressed in skeletal muscle, brown adipose tissue and the myocardium. However, the effects of Ucp3 on myogenic differentiation are still unclear. This study evaluated the effects of Ucp3 on myogenic differentiation, myofiber type and energy metabolism in C2C12 cells. Gain- and loss-of-function studies revealed that Ucp3 could increase the number of myotubes and promote the myogenic differentiation of C2C12 cells. Furthermore, Ucp3 promoted the expression of the type IIb myofiber marker gene myosin heavy chain 4 (Myh4) and decreased the expression of the type I myofiber marker gene myosin heavy chain 7 (Myh7). In addition, energy metabolism related to the expression of PPARG coactivator 1 alpha (Pgc1-α), ATP synthase, H+ transportation, mitochondrial F1 complex, alpha subunit 1 (Atp5a1), lactate dehydrogenase A (Ldha) and lactate dehydrogenase B (Ldhb) increased with Ucp3 overexpression. Ucp3 could promote the myogenic differentiation of type IIb myotubes and accelerate energy metabolism in C2C12 cells. This study can provide the theoretical basis for understanding the role of Ucp3 in energy metabolism.
Assuntos
Fibras Musculares Esqueléticas , Cadeias Pesadas de Miosina , Proteína Desacopladora 3/genética , Proteína Desacopladora 3/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Linhagem Celular , Fibras Musculares Esqueléticas/metabolismo , Diferenciação Celular/genéticaRESUMO
Developing a novel and potent adjuvant with great biocompatibility for immune response augmentation is of great significance to enhance vaccine efficacy. In this work, we prepared a long-term stable, pH-sensitive, and biodegradable Mn3(PO4)2·3H2O nanoparticle (nano-MnP) by simply mixing MnCl2/NaH2PO4/Na2HPO4 solution for the first time and employed it as an immune stimulant in the bivalent COVID-19 protein vaccine comprised of wild-type S1 (S1-WT) and Omicron S1 (S1-Omicron) proteins as antigens to elicit a broad-spectrum immunity. The biological experiments indicated that the nano-MnP could effectively activate antigen-presenting cells through the cGAS-STING pathway. Compared with the conventional Alum-adjuvanted group, the nano-MnP-adjuvanted bivalent vaccine elicited approximately 7- and 8-fold increases in IgG antibody titers and antigen-specific IFN-γ secreting T cells, respectively. Importantly, antisera of the nano-MnP-adjuvanted group could effectively cross-neutralize the SARS-CoV-2 and its five variants of concern (VOCs) including Alpha, Beta, Gamma, Delta, and Omicron, demonstrating that this bivalent vaccine based on S1-WT and S1-Omicron proteins is an effective vaccine design strategy to induce broad-spectrum immune responses. Collectively, this nano-MnP material may provide a novel and efficient adjuvant platform for various prophylactic and therapeutic vaccines and provide insights for the development of the next-generation manganese adjuvant.
RESUMO
The coronavirus 2019 (COVID-19) pandemic is causing serious impacts in the world, and safe and effective vaccines and medicines are the best methods to combat the disease. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in interacting with the angiotensin-converting enzyme 2 (ACE2) receptor, and is regarded as an important target of vaccines. Herein, we constructed the adjuvant-protein conjugate Pam3CSK4-RBD as a vaccine candidate, in which the N-terminal of the RBD was site-selectively oxidized by transamination and conjugated with the TLR1/2 agonist Pam3CSK4. This demonstrated that the conjugation of Pam3CSK4 significantly enhanced the anti-RBD antibody response and cellular response. In addition, sera from the Pam3CSK4-RBD immunized group efficiently inhibited the binding of the RBD to ACE2 and protected cells from SARS-CoV-2 and four variants of concern (alpha, beta, gamma and delta), indicating that this adjuvant strategy could be one of the effective means for protein vaccine development.
Assuntos
COVID-19/prevenção & controle , Lipopeptídeos/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Vacinas Conjugadas/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Formação de Anticorpos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , COVID-19/virologia , Feminino , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Domínios Proteicos/imunologia , Células RAW 264.7 , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/químicaRESUMO
Fibronectin type III domain-containing protein 5 (FNDC5) plays an important role in fat deposition, which can be cut to form Irisin to promote fat thermogenesis, resulting in a decrease in fat content. However, the mechanism of FNDC5 related to fat deposition in pigs is still unclear. In this research, we studied the expression of FNDC5 on different adiposes and its function in the adipogenic differentiation of primary preadipocytes in Mashen pigs. The expression pattern of FNDC5 was detected by qRT-PCR and Western blotting in Mashen pigs. FNDC5 overexpression and interference vectors were constructed and transfected into porcine primary preadipocytes by lentivirus. Then, the expression of key adipogenic genes was detected by qRT-PCR and the content of lipid droplets was detected by Oil Red O staining. The results showed that the expression of FNDC5 in abdominal fat was higher than that in back subcutaneous fat in Mashen pigs, whereas the expression in back subcutaneous fat of Mashen pigs was significantly higher than that of Large White pigs. In vitro, FNDC5 promoted the adipogenic differentiation of primary preadipocytes of Mashen pigs and upregulated the expression of genes related to adipogenesis, but did not activate the extracellular signal-regulated kinase (ERK) signaling pathway. This study can provide a theoretical basis for FNDC5 in adipogenic differentiation in pigs.
Assuntos
Adipócitos , Adipogenia , Suínos , Animais , Adipogenia/genética , Adipócitos/metabolismo , Fibronectinas/genética , Gordura Subcutânea , Gordura Abdominal/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The tumor-associated antigen mucin 1 (MUC1) is an attractive target of antitumor vaccine, but its weak immunogenicity is a big challenge for the development of vaccine. In order to enhance immune responses against MUC1, herein, we conjugated small molecular toll-like receptor 7 agonist (TLR7a) to carrier protein BSA via MUC1 glycopeptide to form a three-component conjugate (BSA-MUC1-TLR7a). Furthermore, we combined the three-component conjugate with Alum adjuvant to explore their synergistic effects. The immunological studies indicated that Alum adjuvant and built-in TLR7a synergistically enhanced anti-MUC1 antibody responses and showed Th1-biased immune responses. Meanwhile, antibodies elicited by the vaccine candidate effectively recognized tumor cells and induced complement-dependent cytotoxicity. In addition, Alum adjuvant and built-in TLR7a synergistically enhanced MUC1 glycopeptide-specific memory CD8+ T-cell immune responses. More importantly, the vaccine with the binary adjuvant can significantly inhibit tumor growth and prolong the survival time of mice in the tumor challenge experiment. This novel vaccine construct provides an effective strategy to develop antitumor vaccines.