Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 34(11): 4313-4328, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35904763

RESUMO

Leaf morphology is one of the most important features of the ideal plant architecture. However, the genetic and molecular mechanisms controlling this feature in crops remain largely unknown. Here, we characterized the rice (Oryza sativa) wide leaf 1 (wl1) mutant, which has wider leaves than the wild-type due to more vascular bundles and greater distance between small vascular bundles. WL1 encodes a Cys-2/His-2-type zinc finger protein that interacts with Tillering and Dwarf 1 (TAD1), a co-activator of the anaphase-promoting complex/cyclosome (APC/C) (a multi-subunit E3 ligase). The APC/CTAD1 complex degrades WL1 via the ubiquitin-26S proteasome degradation pathway. Loss-of-function of TAD1 resulted in plants with narrow leaves due to reduced vascular bundle numbers and distance between the small vascular bundles. Interestingly, we found that WL1 negatively regulated the expression of a narrow leaf gene, NARROW LEAF 1 (NAL1), by recruiting the co-repressor TOPLESS-RELATED PROTEIN and directly binding to the NAL1 regulatory region to inhibit its expression by reducing the chromatin histone acetylation. Furthermore, biochemical and genetic analyses revealed that TAD1, WL1, and NAL1 operated in a common pathway to control the leaf width. Our study establishes an important framework for understanding the APC/CTAD1-WL1-NAL1 pathway-mediated control of leaf width in rice, and provides insights for improving crop plant architecture.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Mutação/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
2.
J Exp Bot ; 69(20): 4791-4804, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30102358

RESUMO

The de novo synthesis of purine nucleotides is crucial to all living organisms, but limited information is available for plants. In this study, we isolated a virescent-albino leaf 1 (val1) mutant of rice (Oryza sativa) that produces dynamic green-revertible albino and narrow-leaf phenotypes. In albino leaves, chloroplast development was defective, pigment contents were reduced, and cell division was impaired compared with the wild-type. Map-based cloning revealed that VAL1 encodes a phosphoribosylamine-glycine ligase (PurD), the second enzyme in the de novo purine biosynthesis pathway. Subcellular localization analysis demonstrated that VAL1 was localized in the chloroplast. Our results demonstrate that VAL1 is a crucial enzyme in the de novo purine biosynthesis pathway and is involved in regulating chloroplast development, chlorophyll metabolism, and cell division during leaf development in rice.


Assuntos
Oryza/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Divisão Celular/genética , Cor , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Pigmentação/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
3.
Rice (N Y) ; 12(1): 83, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31732821

RESUMO

BACKGROUND: Zebra leaf mutants are an important resource for studying leaf colour in rice. In most such mutants, the zebra leaf phenotype results from defective chloroplast biogenesis. The molecular mechanism by which zebra leaves develop remains unclear, so additional zebra-leaf mutants need to be identified. RESULTS: We isolated a novel rice zebra-leaf mutant, named zebra leaf 15 (z15), which showed transversely striped leaves with yellow-green or white-green sectors, in which chloroplast structure was disturbed. Transmission electron microscopy revealed that the structure of various organelles was impaired in yellow/white sectors. Z15, a single-copy gene in the rice genome, encodes a receptor-like protein kinase. Subcellular localization analysis indicates that Z15 and z15 are localized on the plasma membrane. The expression of Z15 is induced by moderate low temperature (18 °C). The mutation of Z15 influenced the expression of two downstream genes, OsWRKY71 and OsMYB4, that were responsive to moderate low temperature. The results show that Z15 plays a crucial role in the early stages of the response to moderate low temperature in rice. CONCLUSIONS: We identified a novel zebra-leaf mutant (z15) that impaired chloroplast structure in rice, LOC_Os05g12680, encoding a receptor-like protein kinase. Further study indiceted that Z15 plays a crucial role in the early stages of the response to moderate low temperature in rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA