Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 37(4): 361-370, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306448

RESUMO

Whether the heat and cold tolerance of endotherms evolve independently or correlatively remains unresolved. Both physiological trade-offs and natural selection can contribute to a coevolutionary pattern of heat and cold tolerance in endotherms. Using a published database, we tested the correlation between upper and lower thermal limits across endothermic species with multi-response generalized linear mixed models incorporating phylogenies. We found a positive correlation between upper and lower thermal limits, which suggested a coevolutionary pattern of heat and cold tolerance. Specifically, this relationship between heat and cold tolerance is phylogenetically constrained for tropical endotherms but not for temperate endotherms. The correlated evolution between heat and cold tolerance may have a significant influence on endotherms' evolution and ecology and needs to be further investigated.


Assuntos
Ecologia , Temperatura Alta , Filogenia , Temperatura Baixa
2.
BMC Surg ; 24(1): 85, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475759

RESUMO

BACKGROUND: The efficacy of palliative primary tumor resection (PTR) in improving prognosis for patients with unresectable metastatic colorectal neuroendocrine neoplasms (NENs) has not been fully explored. METHODS: We performed one retrospective cohort study and recruited 68 patients with unresectable metastatic colorectal NENs from two Chinese medical centers between 2000 and 2022. All patients were assigned to PTR group and no PTR group. The clinicopathological manifestation data were carefully collected, and the survival outcomes were compared between the two groups using Kaplan-Meier methods. Propensity score matching (PSM) was conducted to minimize confounding bias. Univariate and multivariate Cox proportional hazards regression analyses were performed to identify prognostic factors. RESULTS: A total of 32 patients received PTR, and the other 36 patients did not. The median progression-free survival (PFS) and overall survival (OS) times were 4 and 22 months in the whole cohort, respectively. For patients who received no PTR, the median OS was 16 months, and the 1-year OS rate and 3-year OS rate were 56.4% and 39.6%, respectively. For patients who received PTR, the median OS was 24 months, and the 1-year OS rate and 3-year OS rate were 67.9% and 34.1%, respectively. However, the Kaplan-Meier survival curves and log-rank test demonstrated no significant survival difference between the two groups (P = 0.963). Moreover, palliative PTR was also not confirmed as a prognostic factor in subsequent univariable and multivariable Cox proportional hazards regression analyses in both the original and matched cohorts. Only histological differentiation was identified as an independent prognostic factor affecting PFS [hazard ratio (HR) = 1.86, 95% confidence interval (CI): 1.02-3.41, P = 0.043] and OS [HR = 3.70, 95% CI: 1.09-12.48, P = 0.035] in the original cohort. CONCLUSIONS: Palliative PTR may not offer survival benefits for patients with unresectable metastatic colorectal NENs.


Assuntos
Neoplasias Colorretais , Humanos , Estudos Retrospectivos , Neoplasias Colorretais/cirurgia , Prognóstico , Modelos de Riscos Proporcionais , Intervalo Livre de Progressão
3.
Fish Shellfish Immunol ; 134: 108584, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36740083

RESUMO

Toll-like receptor 18 (TLR18), a non-mammalian TLR, has been believed to play an important role in anti-bacterial immunity of teleost fishes. UNC93B1 is a classical molecular chaperone that mediates TLRs transport from endoplasmic reticulum to the located membrane. However, TLR18-mediated signal transduction mechanism and the regulatory effect of UNC93B1 to TLR18 are still unclear in teleost fishes. In this study, the coding sequences of TLR18 and UNC93B1 were cloned from Schizothorax prenanti, named spTLR18 and spUNC93B1, respectively. The spTLR18 and spUNC93B1 are 2583 bp and 1878 bp in length, encode 860 and 625 amino acids, respectively. The spTLR18 widely expressed in various tissues with the highest expression level in liver. After stimulation of Aeromonas hydrophila, lipopolysaccharide (LPS) and Poly(I:C), the expression levels of spTLR18 were significantly increased in spleen and head kidney. The spTLR18 located in the cell membrane, while spUNC93B1 located in the cytoplasm. Luciferase and overexpression analysis showed that spTLR18 activated NF-κB and type I IFN signal pathways, and spTLR18-mediated NF-κB activation might depend on the adaptor molecule MyD88. Besides, spUNC93B1 positively regulates spTLR18-mediated NF-κB signal. Our study first uncovers TLR18-UNC93B1-mediated signal transduction mechanism, which contributes to the understanding of TLR signaling pathway in teleost fishes.


Assuntos
Cyprinidae , NF-kappa B , Animais , NF-kappa B/metabolismo , Imunidade Inata , Proteínas de Peixes/genética , Filogenia , Receptores Toll-Like/genética , Transdução de Sinais
4.
Arch Insect Biochem Physiol ; 114(2): 1-14, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37032456

RESUMO

Ischnura senegalensis Rambur, 1842 is among the most widespread damselfly species in the world. Unlike dragonflies with strong migration abilities, I. senegalensis have limited dispersing abilities. Gene flow among I. senegalensis populations may be greatly influenced by anthropogenic disturbance, fragmented suitable habitats, sea straits, or even global warming. In this study, to investigate the genetic diversity of I. senegalensis populations, we sequenced and collected 498 cytochrome oxidase I sequences across the Old World. Haplotype network analysis showed 51 haplotypes and I. senegalensis could be grouped into four regions (Afrotropical region, Oriental region, main Islands of Japan, and the Ryukyu Islands), each of which contains different dominant haplotypes. Based on molecular variance analysis, we found that populations from the Afrotropical region have quite a low gene flow with the Asian populations (except Yemen). Furthermore, rice cultivation may aid the dispersion of I. senegalensis in the oriental region. Populations from the Ryukyu Islands show the highest genetic diversity, which may be due to the geological separation among islands. Our results prove that I. senegalensis has great genetic diversity among different populations across the world.


Assuntos
Genética Populacional , Odonatos , Animais , Variação Genética , Odonatos/genética , Haplótipos , Fluxo Gênico , Filogenia
5.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768630

RESUMO

Dysfunctions of the ovaries and adrenal glands are both evidenced to cause aberrant adipose tissue (AT) remodeling and resultant metabolic disorders, but their distinct and common roles are poorly understood. In this study, through biochemical, histological and RNA-seq analyses, we comprehensively explored the mechanisms underpinning subcutaneous (SAT) and visceral adipose tissue (VAT) remodeling, in response to ovariectomy (OVX) versus adrenalectomy (ADX) in female mice. OVX promoted adipocyte differentiation and fat accumulation in both SAT and VAT, by potentiating the Pparg signaling, while ADX universally prevented the cell proliferation and extracellular matrix organization in both SAT and VAT, likely by inactivating the Nr3c1 signaling, thus causing lipoatrophy in females. ADX, but not OVX, exerted great effects on the intrinsic difference between SAT and VAT. Specifically, ADX reversed a large cluster of genes differentially expressed between SAT and VAT, by activating 12 key transcription factors, and thereby caused senescent cell accumulation, massive B cell infiltration and the development of selective inflammatory response in SAT. Commonly, both OVX and ADX enhance circadian rhythmicity in VAT, and impair cell proliferation, neurogenesis, tissue morphogenesis, as well as extracellular matrix organization in SAT, thus causing dysfunction of adipose tissues and concomitant metabolic disorders.


Assuntos
Tecido Adiposo , Adrenalectomia , Camundongos , Feminino , Animais , Humanos , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Adiposidade , Ovariectomia/efeitos adversos , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo
6.
Rev Esp Enferm Dig ; 115(6): 336-337, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36281930

RESUMO

Rectal neuroendocrine neoplasms (NENs) are a group of rare and heterogeneous diseases and are classified as well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) based on histological differentiation. The patients were followed up with a median period of 32.5 (range 2-123) months and no patients were lost to follow-up. The median PFS time could not be obtained, as only less than half of the patients suffered tumor progression by the end of follow-up. The 1-year and 3-year PFS rates were 73.5% and 69.2%, respectively. The median OS was 86 months in the entire cohort. The 1-year and 3-year OS rates were 100% and 96.0%, respectively.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Estudos Retrospectivos , Carcinoma Neuroendócrino/patologia
7.
BMC Genomics ; 23(1): 279, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392803

RESUMO

BACKGROUND: Salivary gland (SMG) degeneration and dysfunction are common symptoms that occur after sex hormone deprivation, but the underlying mechanisms remain largely unknown. Additionally, immunocastration, which causes drop of sex hormones, has been developed as an alternative to surgical castration, however whether it exerts similar effects as surgical castration on the salivary glands is unknown. Through histological and RNA-seq analysis, we assessed changes in morphology and transcriptome of SMG in response to immunocastration (IM) versus surgical castration (bilateral orchiectomy, ORC). RESULTS: Compared to entire males (EM), ORC caused severe degeneration of SMG in rats, as evidenced by both decreased (P < 0.01) SMG weight and organ index, and by decreased (P < 0.01) quantity of SMG acini and ducts. IM had minimal effects (P > 0.05) on SMG weight and organ index, but it still caused degeneration (P < 0.05) of the acini and ducts. Even though, the quantity of both SMG acini and ducts was much higher (P < 0.001) in IM than in ORC. Functional enrichment analysis of the common regulated genes by ORC/IM revealed disrupted epithelial cell development, angiogenesis, anatomical structure morphogenesis and enhanced cell death are associated with SMG degeneration in deprivation of androgens. Integrated data analysis shown that there existed a selective hyperfunction of SMG ribosome and mitochondrion in ORC but not in IM, which might be associated with more severe degeneration of SMG in ORC than in IM. CONCLUSIONS: Our findings suggested that both surgical castration and immunocastration caused SMG degeneration by disrupting epithelial cell development, angiogenesis, anatomical structure morphogenesis and enhancing cell death. But, surgical castration selectively induced hyperfunction of SMG ribosome and mitochondrion, thus causing more severe degeneration of SMG than immunocastration.


Assuntos
Orquiectomia , Glândula Submandibular , Androgênios , Animais , Masculino , RNA-Seq , Ratos , Ratos Sprague-Dawley , Glândula Submandibular/metabolismo
8.
Fish Shellfish Immunol ; 97: 235-247, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863902

RESUMO

Lipopolysaccharide (LPS) is a classical pathogen-associated molecular pattern that can trigger strong inflammatory response mainly by TLR4-mediated signaling pathway in mammals, but the molecular mechanism of anti-LPS immunity is unclear in teleost fishes. In this study, we analyzed the gene expression features based on transcriptome analysis in Schizothorax prenanti (S. prenanti), after stimulation with two sources of LPS from Aeromonas hydrophila and Escherichia coli (Ah. LPS and Ecoli. LPS). 921 different expression genes (DEGs) after Ah. LPS stimulation and 975 DEGs after Ecoli.LPS stimulation were acquired, but only 706 and 750 DEGs were successfully annotated into the databases, respectively. Both of two groups of DGEs were significantly enriched into immune-related pathways by KEGG enrichment analysis, such as "Toll-like receptor signaling pathway", "Cytokine-cytokine receptor interaction" and "JAK-STAT signaling pathway". The annotated DEGs from Ah. LPS and Ecoli. LPS stimulation shared 470 DEGs, including 88 immune-related DEGs (IRGs) identified mainly by KEGG enrichment to immune-related signaling pathways. Among the shared IRGs, four pattern-recognition genes (TLR5, TLR25, PTX3 and C1q) were induced with high expression foldchange, and IFN-γ and relative genes also showed higher expression levels than control. Meanwhile, inflammatory signals were highlighted by upregulating the expression of inflammatory cytokines (IL-1ß, IL-10 and IL-8). Moreover, some non-shared IRGs (including TLR2 and TLR4) were identified, suggesting that different sources of LPS own different potentials for the induction of immune gene expression. In conclusion, TLR5, TLR25, PTX3 and C1q may function as the sensing molecules to catch the invasion signal of LPS. The anti-LPS immune response may be involved into TLR25/TLR5-mediated inflammatory signals that regulate subsequently the activation of PTX3/C1q-modulated complement pathway upon the induction of PTX3 expression, and the crosstalk between IFN-γ and TLR signaling pathways in teleost fishes. This study will contribute to further explore the molecular mechanism of LPS-induced immunity in teleost fishes.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Lipopolissacarídeos/efeitos adversos , Substâncias Protetoras/farmacologia , Aeromonas hydrophila/fisiologia , Animais , Escherichia coli/fisiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
9.
Fish Shellfish Immunol ; 95: 81-92, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31610291

RESUMO

Mammal Toll-like receptor 5 (TLR5) can directly recognize bacterial flagellin, initiate the inflammatory signaling cascades and trigger body immune system to clear the "non-self" substances. In teleosts, TLR5 has presented more complexes not only in increasing the molecular types, but also in elevating the functional diversity. In this study, we identified two TLR5 family members in Schizothorax prenanti, named as spTLR5-1 and spTLR5-2. The complete coding sequence (CDS) of spTLR5-1 is 2622 bp, encoding 873 amino acids, while the complete CDS of spTLR5-2 is 2640 bp, encoding 879 amino acids. Phylogenetic analysis showed that spTLR5-1 and spTLR5-2 were clustered to the TLR5 of schizothorax richardsonii and Cyprinus carpio respectively. The 3D structure analysis exhibited that the α-helix, ß-sheet, and the ligand binding site of spTLR5-1, spTLR5-2 and human TLR5 have large differences. The spTLR5-1 and spTLR5-2 had extensively expressed in various tissues, including the higher expression in liver, spleen and head kidney. Both the expression levels of spTLR5-1 and spTLR5-2 were significantly up-regulated after Aeromonas hydrophila (A. hydrophila) challenge. And, the downstream genes, such as AP-1, IKK-α, NF-kB, IL-1ß, IL-8 and TNF-α, were also significantly up-regulated after A. hydrophila challenge. Apart from that, the luciferase reporter assay demonstrated that the co-transfection of spTLR5-1 or spTLR5-2 into HEK293T cells showed the significantly increased NF-kB luciferase activity after flagellin stimulation. In conclusion, our results reveal that both two molecular types of fish TLR5 may commonly mediate the recognition of flagellin and the activation of the downstream inflammatory signaling molecules.


Assuntos
Carpas/genética , Proteínas de Peixes/genética , Receptor 5 Toll-Like/genética , Aeromonas hydrophila , Sequência de Aminoácidos , Animais , Carpas/imunologia , Clonagem Molecular , Proteínas de Peixes/imunologia , Flagelina/imunologia , Células HEK293 , Humanos , Imunidade Inata , Estrutura Molecular , Filogenia , Alinhamento de Sequência , Transdução de Sinais , Receptor 5 Toll-Like/imunologia
10.
Fish Shellfish Immunol ; 93: 986-996, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31422176

RESUMO

Evolutionary development has increased the diversity of genotypes and the complexity of gene functions in fish. TLR22 has been identified as a teleost-specific gene, but its functions are tremendously different among different fish species. Whether the functional diversity relates to the difference of genotypes remains poorly understand. In this study, we cloned and identified three TLR22 molecules from Schizothorax prenanti (S. prenanti), named as spTLR22-1, spTLR22-2 and spTLR22-3. The full-length coding regions of spTLR22s are 2841 bp, 2805 bp and 2868 bp and coding 946 aa, 934 aa and 955 aa, respectively. All spTLR22s are composed of multiple leucine-rich repeat (LRR) domains, a transmembrane structure and a Toll/IL-1 receptor (TIR) region. The phylogenetic analysis showed that three spTLR22s were close to Cyprinus carpio TLR22-1, TLR22-2 and TLR22-3, respectively. Among the spTLR22s, they presented not close relationship but remained to belong to TLR22 subfamily. All spTLR22s were ubiquitously expressed in all tested tissues, but the expression levels of spTLR22s were dominant in immune-related tissues, such as gill and spleen. The expression levels of spTLR22-1 and spTLR22-3 were significantly increased after treatment with bacteria, LPS and Poly(I:C). However, spTLR22-2 seems like no response to these treatments. The luciferase reporter assay demonstrated that all spTLR22s could activate NF-κB signaling pathway, but only spTLR22-1 and spTLR22-2 could activate IFN-ß signaling pathway. Interestingly, in the ligand recognition analysis, spTLR22-1 and spTLR22-3 but not spTLR22-2 had the recognized potential to Poly(I:C), and all spTLR22s could not recognize LPS. Both spTLR22-1 and spTLR22-3 significantly up-regulated the expression of anti-viral-related genes (Mx, IFN and ISG15) and down-regulated the expression of anti-inflammatory factor IL-10 after the overexpression in carp EPC cell line, but spTLR22-2 failed to impact the expression of these genes. Moreover, we found that all spTLR22s localized to the intracellular region. Taken together, our results reveal that spTLR22-1 and spTLR22-3 but not spTLR22-2 may be involved into the anti-viral immune response via IFN-ß signaling pathway, and all spTLR22s can activate NF-κB signaling pathway but only spTLR22-1 and spTLR22-3 response to the stimulation of bacteria and LPS.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Proteínas de Peixes/genética , Expressão Gênica/imunologia , Receptores Toll-Like/genética , Animais , Fenômenos Fisiológicos Bacterianos , Linhagem Celular , Cyprinidae/metabolismo , Citocinas/metabolismo , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/veterinária , Lipopolissacarídeos/farmacologia , Luciferases/metabolismo , Filogenia , Poli I-C/farmacologia , Análise de Sequência de Proteína/veterinária , Receptores Toll-Like/metabolismo
11.
Proc Biol Sci ; 285(1874)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540517

RESUMO

Antibiotic resistance constitutes one of the most pressing public health concerns. Antimicrobial peptides (AMPs) of multicellular organisms are considered part of a solution to this problem, and AMPs produced by bacteria such as colistin are last-resort drugs. Importantly, AMPs differ from many antibiotics in their pharmacodynamic characteristics. Here we implement these differences within a theoretical framework to predict the evolution of resistance against AMPs and compare it to antibiotic resistance. Our analysis of resistance evolution finds that pharmacodynamic differences all combine to produce a much lower probability that resistance will evolve against AMPs. The finding can be generalized to all drugs with pharmacodynamics similar to AMPs. Pharmacodynamic concepts are familiar to most practitioners of medical microbiology, and data can be easily obtained for any drug or drug combination. Our theoretical and conceptual framework is, therefore, widely applicable and can help avoid resistance evolution if implemented in antibiotic stewardship schemes or the rational choice of new drug candidates.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Evolução Molecular , Simulação por Computador , Testes de Sensibilidade Microbiana , Modelos Genéticos
12.
Antimicrob Agents Chemother ; 60(3): 1717-24, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26729502

RESUMO

Antimicrobial peptides (AMPs) are ancient and conserved across the tree of life. Their efficacy over evolutionary time has been largely attributed to their mechanisms of killing. Yet, the understanding of their pharmacodynamics both in vivo and in vitro is very limited. This is, however, crucial for applications of AMPs as drugs and also informs the understanding of the action of AMPs in natural immune systems. Here, we selected six different AMPs from different organisms to test their individual and combined effects in vitro. We analyzed their pharmacodynamics based on the Hill function and evaluated the interaction of combinations of two and three AMPs. Interactions of AMPs in our study were mostly synergistic, and three-AMP combinations displayed stronger synergism than two-AMP combinations. This suggests synergism to be a common phenomenon in AMP interaction. Additionally, AMPs displayed a sharp increase in killing within a narrow dose range, contrasting with those of antibiotics. We suggest that our results could lead a way toward better evaluation of AMP application in practice and shed some light on the evolutionary consequences of antimicrobial peptide interactions within the immune system of organisms.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Simulação por Computador , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana
13.
World J Gastroenterol ; 30(5): 471-484, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38414587

RESUMO

BACKGROUND: Primary sclerosing cholangitis (PSC) is characterized by chronic inflammation and it predisposes to cholangiocarcinoma due to lack of effective treatment options. Recombinant adeno-associated virus (rAAV) provides a promising platform for gene therapy on such kinds of diseases. A microRNA (miRNA) let-7a has been reported to be associated with the progress of PSC but the potential therapeutic implication of inhibition of let-7a on PSC has not been evaluated. AIM: To investigate the therapeutic effects of inhibition of a miRNA let-7a transferred by recombinant adeno-associated virus 8 (rAAV8) on a xenobiotic-induced mouse model of sclerosing cholangitis. METHODS: A xenobiotic-induced mouse model of sclerosing cholangitis was induced by 0.1% 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine (DDC) feeding for 2 wk or 6 wk. A single dose of rAAV8-mediated anti-let-7a-5p sponges or scramble control was injected in vivo into mice onset of DDC feeding. Upon sacrifice, the liver and the serum were collected from each mouse. The hepatobiliary injuries, hepatic inflammation and fibrosis were evaluated. The targets of let-7a-5p and downstream molecule NF-κB were detected using Western blot. RESULTS: rAAV8-mediated anti-let-7a-5p sponges can depress the expression of let-7a-5p in mice after DDC feeding for 2 wk or 6 wk. The reduced expression of let-7a-5p can alleviate hepato-biliary injuries indicated by serum markers, and prevent the proliferation of cholangiocytes and biliary fibrosis. Furthermore, inhibition of let-7a mediated by rAAV8 can increase the expression of potential target molecules such as suppressor of cytokine signaling 1 and Dectin1, which consequently inhibit of NF-κB-mediated hepatic inflammation. CONCLUSION: Our study demonstrates that a rAAV8 vector designed for liver-specific inhibition of let-7a-5p can potently ameliorate symptoms in a xenobiotic-induced mouse model of sclerosing cholangitis, which provides a possible clinical translation of PSC of human.


Assuntos
Colangite Esclerosante , MicroRNAs , Humanos , Camundongos , Animais , Colangite Esclerosante/induzido quimicamente , Colangite Esclerosante/genética , Colangite Esclerosante/terapia , MicroRNAs/genética , Dependovirus/genética , Cirrose Hepática/patologia , NF-kappa B , Xenobióticos/efeitos adversos , Fibrose , Modelos Animais de Doenças , Inflamação
14.
J Anim Sci Biotechnol ; 15(1): 86, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858724

RESUMO

BACKGROUND: Previous studies have shown that the vitrification of metaphase II (MII) oocytes significantly represses their developmental potential. Abnormally increased oxidative stress is the probable factor; however, the underlying mechanism remains unclear. The walnut-derived peptide TW-7 was initially isolated and purified from walnut protein hydrolysate. Accumulating evidences implied that TW-7 was a powerful antioxidant, while its prospective application in oocyte cryopreservation has not been reported. RESULT: Here, we found that parthenogenetic activation (PA) zygotes derived from vitrified MII oocytes showed elevated ROS level and delayed progression of pronucleus formation. Addition of 25 µmol/L TW-7 in warming, recovery, PA, and embryo culture medium could alleviate oxidative stress in PA zygotes from vitrified mouse MII oocytes, furtherly increase proteins related to histone lactylation such as LDHA, LDHB, and EP300 and finally improve histone lactylation in PA zygotes. The elevated histone lactylation facilitated the expression of minor zygotic genome activation (ZGA) genes and preimplantation embryo development. CONCLUSIONS: Our findings revealed the mechanism of oxidative stress inducing repressed development of PA embryos from vitrified mouse MII oocytes and found a potent and easy-obtained short peptide that could significantly rescue the decreased developmental potential of vitrified oocytes, which would potentially contribute to reproductive medicine, animal protection, and breeding.

15.
Mol Plant Pathol ; 25(4): e13447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561315

RESUMO

Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Reprodutibilidade dos Testes , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/farmacologia , Imunidade Vegetal/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
16.
Plants (Basel) ; 12(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514328

RESUMO

Reversible phosphorylation of proteins is a ubiquitous regulatory mechanism in vivo that can respond to external changes, and plays an extremely important role in cell signal transduction. Protein phosphatase 2C is the largest protein phosphatase family in higher plants. Recently, it has been found that some clade A members can negatively regulate ABA signaling pathways. However, the functions of several subgroups of Arabidopsis PP2C other than clade A have not been reported, and whether other members of the PP2C family also participate in the regulation of ABA signaling pathways remains to be studied. In this study, based on the previous screening and identification work of PP2C involved in the ABA pathway, the clade F member PIA1 encoding a gene of the PP2C family, which was down-regulated after ABA treatment during the screening, was selected as the target. Overexpression of PIA1 significantly down-regulated the expression of ABA marker gene RD29A in Arabidopsis protoplasts, and ABA-responsive elements have been found in the cis-regulatory elements of PIA1 by promoter analysis. When compared to Col-0, transgenic plants overexpressing PIA1 were less sensitive to ABA, whereas pia1 showed the opposite trait in seed germination, root growth, and stomatal opening experiments. Under drought stress, SOD, POD, CAT, and APX activities of PIA1 overexpression lines were lower than Col-0 and pia1, while the content of H2O2 was higher, leading to its lowest survival rate in test plants, which were consistent with the significant inhibition of the expression of ABA-dependent stress-responsive genes RD29B, ABI5, ABF3, and ABF4 in the PIA1 transgenic background after ABA treatment. Using yeast two-hybrid and luciferase complementation assays, PIA1 was found to interact with multiple ABA key signaling elements, including 2 RCARs and 6 SnRK2s. Our results indicate that PIA1 may reduce plant drought tolerance by functioning as a common negative regulator involved in ABA signaling pathway.

17.
Front Plant Sci ; 14: 1139539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538059

RESUMO

Pathogen infection is one of the major causes of yield loss in the crop field. The rapid increase of antimicrobial resistance in plant pathogens has urged researchers to develop both new pesticides and management strategies for plant protection. The antimicrobial peptides (AMPs) showed potential on eliminating plant pathogenic fungi and bacteria. Here, we first summarize several overlooked advantages and merits of AMPs, which includes the steep dose-response relations, fast killing ability, broad synergism, slow resistance selection. We then discuss the possible application of AMPs for plant protection with above merits, and highlight how AMPs can be incorporated into a more efficient integrated management system that both increases the crop yield and reduce resistance evolution of pathogens.

18.
Plant Sci ; 331: 111686, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963637

RESUMO

Many pattern-recognition receptors (PRRs) and their corresponding ligands have been identified. However, it is largely unknown how similar and different these ligands are in inducing plant innate immunity and affecting plant development. In this study, we examined three well characterized ligands in Arabidopsis thaliana, namely flagellin 22 (flg22), plant elicitor peptide 1 (pep1) and a conserved 20-amino-acid fragment found in most necrosis and ethylene-inducing peptide 1-like proteins (nlp20). Our quantitative analyses detected the differences in amplitude in the early immune responses of these ligands, with nlp20-induced responses typically being slower than those mediated by flg22 and pep1. RNA sequencing showed the shared differentially expressed genes (DEGs) was mostly enriched in defense response, whereas nlp20-regulated genes represent only a fraction of those genes differentially regulated by flg22 and pep1. The three elicitors all inhibited primary root growth, especially pep1, which inhibited both auxin transport and signaling pathway. In addition, pep1 significantly inhibited the cell division and genes involved in cell cycle. Compared with flg22 and nlp20, pep1 induced much stronger expression of its receptor in roots, suggesting a potential positive feedback regulation in the activation of immune response. Despite PRRs and their co-receptor BAK1 were necessary for both PAMP induced immune response and root growth inhibition, bik1 mutant only showed impaired defense response but relatively normal root growth inhibition, suggesting BIK1 acts differently in these two biological processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flagelina/farmacologia , Flagelina/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Peptídeos/metabolismo , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo
19.
Insects ; 13(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36135486

RESUMO

Insects closely interact with plants with multiple genes involved in their interactions. ß-glucosidase, constituted mainly by glycoside hydrolase family 1 (GH1), is a crucial enzyme in insects to digest plant cell walls and defend against natural enemies with sequestered plant metabolites. To gain more insights into the role of this enzyme in plant-insect interactions, we analyzed the evolutionary history of the GH1 gene family with publicly available insect genomes. We found that GH1 is widely present in insects, while the gene numbers are significantly higher in insect herbivores directly feeding on plant cell walls than in other insects. After reconciling the insect GH1 gene tree with a species tree, we found that the patterns of duplication and loss of GH1 genes differ among insect orders, which may be associated with the evolution of their ecology. Furthermore, the majority of insects' GH1 genes were tandem-duplicated and subsequently went through neofunctionalization. This study shows the evolutionary history of an important gene family GH1 in insects and facilitates our understanding of the evolution of insect-plant interactions.

20.
Reprod Biol ; 22(3): 100669, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35772190

RESUMO

Follicle-stimulating hormone (FSH) is crucial for ovarian folliculogenesis and thus essential for female fertility. Here, we developed a novel FSH vaccine based on the tandem of a 13-amino acid receptor-binding epitope of FSHß (FSHß13AA-T) and used a mouse model to test its efficacy in female fertility regulation. Compared to placebo-immunized controls, FSHß13AA-T vaccination: induced a marked (P < 0.05) antibody generation; reduced (P < 0.05) serum concentrations of FSH, inhibin B and 17ß-estradiol; disrupted (P < 0.05) normal estrous cyclicity; delayed (P = 0.08) establishment of pregnancy; blocked (P < 0.05) folliculogenesis; and reduced (P < 0.05) litter size. Mechanistically, FSH vaccination reduced (P < 0.05) ovarian estrogen production by decreasing Lhcgr, Cyp19a1 and HSD3ß1 expression, and suppressed ovarian follicular development by decreasing ovarian Fshr, Inhα, Foxo3a, Bmp15 and Cdh1 expression. Overall, vaccination of female mice with FSHß13AA-T substantially disrupted FSH-dependent ovarian steroidogenesis and folliculogenesis, and caused subfertility. Therefore, vaccines based on FSHß13AA-T have potential as anti-fertility/contraceptive agents in females.


Assuntos
Fertilidade/fisiologia , Subunidade beta do Hormônio Folículoestimulante , Animais , Epitopos , Feminino , Hormônio Foliculoestimulante , Camundongos , Receptores de Aminoácido , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA