RESUMO
Patterned spontaneous activity periodically displays in developing retinas termed retinal waves, essential for visual circuit refinement. In neonatal rodents, retinal waves initiate in starburst amacrine cells (SACs), propagating across retinal ganglion cells (RGCs), further through visual centers. Although these waves are shown temporally synchronized with transiently high PKA activity, the downstream PKA target important for regulating the transmission from SACs remains unidentified. A t-SNARE, synaptosome-associated protein of 25 kDa (SNAP-25/SN25), serves as a PKA substrate, implying a potential role of SN25 in regulating retinal development. Here, we examined whether SN25 in SACs could regulate wave properties and retinogeniculate projection during development. In developing SACs, overexpression of wild-type SN25b, but not the PKA-phosphodeficient mutant (SN25b-T138A), decreased the frequency and spatial correlation of wave-associated calcium transients. Overexpressing SN25b, but not SN25b-T138A, in SACs dampened spontaneous, wave-associated, postsynaptic currents in RGCs and decreased the SAC release upon augmenting the cAMP-PKA signaling. These results suggest that SN25b overexpression may inhibit the strength of transmission from SACs via PKA-mediated phosphorylation at T138. Moreover, knockdown of endogenous SN25b increased the frequency of wave-associated calcium transients, supporting the role of SN25 in restraining wave periodicity. Finally, the eye-specific segregation of retinogeniculate projection was impaired by in vivo overexpression of SN25b, but not SN25b-T138A, in SACs. These results suggest that SN25 in developing SACs dampens the spatiotemporal properties of retinal waves and limits visual circuit refinement by phosphorylation at T138. Therefore, SN25 in SACs plays a profound role in regulating visual circuit refinement.
Assuntos
Sinalização do Cálcio/genética , Retina/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Vias Visuais/fisiologia , Potenciais de Ação/genética , Células Amácrinas/metabolismo , Células Amácrinas/fisiologia , Animais , Animais Recém-Nascidos/genética , Animais Recém-Nascidos/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Patch-Clamp , Fosforilação , Ligação Proteica , Retina/crescimento & desenvolvimento , Retina/fisiologia , Células Ganglionares da Retina/metabolismo , Potenciais Sinápticos/genéticaRESUMO
BACKGROUND: Podoplanin (PDPN) is a transmembrane glycoprotein that mediates tumor cell-induced platelets aggregation in different cancer types. Emerging data indicate that PDPN is a marker for poor prognosis of human oral squamous cell carcinoma (OSCC). However, the functional impacts of PDPN on cancer formation and disease progression of OSCC remain to be elucidated. METHODS: The sublines of the OECM-1 oral cancer cells with PDPN knockdown or overexpression were established. The cellular characteristics and the ability to induce platelet aggregation of these cells lines were analyzed. An ectopic xenograft animal model by inoculating cancer cells into the anterior neck region of nude mice was established to investigate the functional impact of PDPN on disease progression and cancer-associated thrombosis of OSCC. RESULTS: PDPN promoted OSCC cell migration and invasion, but had no effect on cell proliferation in vitro and tumor growth in vivo. Co-incubation of PDPN-positive (PDPN+) OSCC cells with platelets induced platelet activation and aggregation. The mice bearing PDPN+ tumor had a decrease in overall survival despite that there was no gross appearance of distant metastasis. A speckled immunofluorescence staining pattern of platelet marker mCD41 was defined in the PDPN+ tumor sections and the intensity was greater than in the PDPN-low or negative tumor sections. Co-immunofluorescence staining of the tumor sections with mCD41 and the endothelial cell marker mCD31 further demonstrated that platelet aggregates were located in the lumen of blood vessel and were also distributed intratumorally in the mice bearing PDPN+ tumors. CONCLUSIONS: These data demonstrated that PDPN expression in the cancer cells is associated with high risk of thrombosis, leading to unfavorable overall survival of the mice. This study provides new insights into the functions of PDPN in cancer-associated thrombosis and in the pathophysiology of OSCC.