RESUMO
Searching for functional square lattices in layered superconductor systems offers an explicit clue to modify the electron behavior and find exotic properties. The trigonal SnAs3 structural units in SnAs-based systems are relatively conformable to distortion, which provides the possibility to achieve structurally topological transformation and higher superconducting transition temperatures. In the present work, the functional As square lattice was realized and activated in Li0.6 Sn2 As2 and NaSnAs through a topotactic structural transformation of trigonal SnAs3 to square SnAs4 under pressure, resulting in a record-high Tc among all synthesized SnAs-based compounds. Meanwhile, the conductive channel transfers from the out-of-plane pz orbital to the in-plane px +py orbitals, facilitating electron hopping within the square 2D lattice and boosting the superconductivity. The reorientation of p-orbital following a directed local structure transformation provides an effective strategy to modify layered superconducting systems.
RESUMO
Here, we report on a new kind of compound, XδIr4X12-δ (X = P, As), the first hole-doped skutterudites superconductor. We provide atomic-resolution images of the caging As atoms using scanning transmission electron microscopy (STEM). By inserting As atoms into the caged structure under a high pressure, superconductivity emerges with a maximum transition temperature (Tc) of 4.4 K (4.8 K) in IrAs3 (IrP3). In contrast to all of the electron-doped skutterudites, the electronic states around the Fermi level in XδIr4X12-δ are dominated by the caged X atom, which can be described by a simple body-centered tight-binding model, implying a distinct pairing mechanism. Our density functional theory (DFT) calculations reveal an intimate relationship between the pressure-dependent local-phonon mode and the enhancement of Tc. The discovery of XδIr4X12-δ provides an arena to investigate the uncharted territory of hole-doped skutterudites, and the method proposed here represents a new strategy of carrier doping in caged structures, without introducing extra elements.
RESUMO
The charge, spin, and composition degrees of freedom in a high-entropy alloy endow it with tunable valence and spin states, infinite combinations, and excellent mechanical performance. Meanwhile, the stacking, interlayer, and angle degrees of freedom in a van der Waals material bring to it exceptional features and technological applications. Integration of these two distinct material categories while keeping their merits would be tempting. On the basis of this heuristic thinking, we design and explore a new range of materials (i.e., dichalcogenides, halides, and phosphorus trisulfides) with multiple metallic constitutions and intrinsic layered structure, which are coined as high-entropy van der Waals materials. Millimeter-scale single crystals with a homogeneous element distribution can be efficiently acquired and easily exfoliated or intercalated in this materials category. Multifarious physical properties such as superconductivity, magnetic ordering, metal-insulator transition, and corrosion resistance have been exploited. Further research based on the concept of high-entropy van der Waals materials will enrich the high-throughput design of new systems with intriguing properties and practical applications.
RESUMO
Hydrogen bonds profoundly influence the fundamental chemical, physical and biological properties of molecules and materials. Owing to their relatively weaker interactions compared to other chemical bonds, hydrogen bonds alone are generally insufficient to induce substantial changes in electrical properties, thus imposing severe constraints on their applications in related devices. Here we report a metal-insulator transition controlled by hydrogen bonds for an organic-inorganic (1,3-diaminopropane)0.5SnSe2 superlattice that exhibits a colossal on-off ratio of 107 in electrical resistivity. The key to inducing the transition is a change in the amino group's hydrogen-bonding structure from dynamic to static. In the dynamic state, thermally activated free rotation continuously breaks and forms transient hydrogen bonds with adjacent Se anions. In the static state, the amino group forms three fixed-angle positions, each separated by 120°. Our findings contribute to the understanding of electrical phenomena in organic-inorganic hybrid materials and may be used for the design of future molecule-based electronic materials.
RESUMO
As an empirical tool in materials science and engineering, the iconic phase diagram owes its robustness and practicality to the topological characteristics rooted in the celebrated Gibbs phase law free variables (F) = components (C) - phases (P) + 2. When crossing the phase diagram boundary, the structure transition occurs abruptly, bringing about an instantaneous change in physical properties and limited controllability on the boundaries (F = 1). Here, the sharp phase boundary is expanded to an amorphous transition region (F = 2) by partially disrupting the long-range translational symmetry, leading to a sequential crystalline-amorphous-crystalline (CAC) transition in a pressurized In2Te5 single crystal. Through detailed in situ synchrotron diffraction, it is elucidated that the phase transition stems from the rotation of immobile blocks [In2Te2]2+, linked by hinge-like [Te3]2- trimers. Remarkably, within the amorphous region, the amorphous phase demonstrates a notable 25% increase of the superconducting transition temperature (Tc), while the carrier concentration remains relatively constant. Furthermore, a theoretical framework is proposed revealing that the unconventional boost in amorphous superconductivity might be attributed to an intensified electron correlation, triggered by a disorder-augmented multifractal behavior. These findings underscore the potential of disorder and prompt further exploration of unforeseen phenomena on the phase boundaries.
RESUMO
By breaking the restrictions on traditional alloying strategy, the high entropy concept has promoted the exploration of the central area of phase space, thus broadening the horizon of alloy exploitation. This review highlights the marriage of the high entropy concept and van der Waals systems to form a new family of materials category, namely the high entropy van der Waals materials (HEX, HE = high entropy, X = anion clusters) and describes the current issues and next challenges. The design strategy for HEX has integrated the local feature (e.g., composition, spin, and valence states) of structural units in high entropy materials and the holistic degrees of freedom (e.g., stacking, twisting, and intercalating species) in van der Waals materials, and is successfully used for the discovery of high entropy dichalcogenides, phosphorus tri-chalcogenides, halogens, and MXene. The rich combination and random distribution of the multiple metallic constituents on the nearly regular 2D lattice give rise to a flexible platform to study the correlation features behind a range of selected physical properties, e.g., superconductivity, magnetism, and metal-insulator transition. The deliberate design of structural units and their stacking configuration can also create novel catalysts to enhance their performance in a bunch of chemical reactions.
RESUMO
The charge states of elements dictate the behavior of electrons and phonons in a lattice, either directly or indirectly. Here, we report the discovery of an anomalous charge state evolution in the superconducting M3Al2C (M = Mo, W) system, where electron doping can be achieved through "oxidation." Specifically, with the continuous removal of electron donor (Al) from the structure, we found an electron doping effect in the negatively charged transition metals. Over a certain threshold, the charge state of transition metals goes through a sudden reversion from negative to positive, which leads to a subsequent structure collapse. Concomitantly, the previous robust superconducting transition temperatures (Tcs) can be flexibly modulated. Detailed analysis reveals the origin of the superconductivity and the intimate relationship between the charge state and the electron-phonon coupling constant. The peculiar charge state in M3Al2C plays an important role in both its structure and superconductivity.