Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(4): 2326-2339, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38156429

RESUMO

Diabetic nephropathy (DN) is one of the complications of diabetes mellitus and the main cause of end-stage renal disease (ESRD), which is a serious threat to human health. In DN, mesangial cells (MCs) are a critical target cell that perform a variety of key functions, and abnormal proliferation of MCs is a common and prominent pathological change in DN. In recent years, the investigation of Chinese medicine interventions for DN has increased significantly in recent years due to the many potential adverse effects and controversies associated with the treatment of DN with Western medicines. In this study, we evaluated the protective effect of resveratrol (RES), an active ingredient known as a natural antioxidant, on HMCs under high glucose and explored its possible mechanism of action. We found that RES inhibited the proliferation of human mesangial cell (HMC) under high glucose and blocked cell cycle progression. In the high glucose environment, RES upregulated miR-1231, reduced IGF1 expression, inhibited the activity of the extracellular signal-regulated kinase (ERK) signaling pathway and reduced levels of the inflammatory factors TNF-α and IL-6. In addition, we found that miR-1231 mimics were synergistically inhibited with RES, whereas miR-1231 inhibitor attenuated the protective effect of RES on HMCs. Thus, our results suggest that the protective effect of RES on HMCs under high glucose is achieved, at least in part, through modulation of the miR-1231/IGF1/ERK pathway. The discovery of this potential mechanism may provide a new molecular therapeutic target for the prevention and treatment of DN, and may also bring new ideas for the clinical research in DN.


Assuntos
Nefropatias Diabéticas , MicroRNAs , Humanos , Células Mesangiais/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Glucose/toxicidade , Glucose/metabolismo , Nefropatias Diabéticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Fator de Crescimento Insulin-Like I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA