Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(10): e18402, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39008328

RESUMO

Syntaxin 17 (STX17) has been identified as a crucial factor in mediating the fusion of autophagosomes and lysosomes. However, its specific involvement in the context of atherosclerosis (AS) remains unclear. This study sought to elucidate the role and mechanistic contributions of STX17 in the initiation and progression of AS. Utilizing both in vivo and in vitro AS model systems, we employed ApoE knockout (KO) mice subjected to a high-fat diet and human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) to assess STX17 expression. To investigate underlying mechanisms, we employed shRNA-STX17 lentivirus to knock down STX17 expression, followed by evaluating autophagy and inflammation in HUVECs. In both in vivo and in vitro AS models, STX17 expression was significantly upregulated. Knockdown of STX17 exacerbated HUVEC damage, both with and without ox-LDL treatment. Additionally, we observed that STX17 knockdown impaired autophagosome degradation, impeded autophagy flux and also resulted in the accumulation of dysfunctional lysosomes in HUVECs. Moreover, STX17 knockdown intensified the inflammatory response following ox-LDL treatment in HUVECs. Further mechanistic exploration revealed an association between STX17 and STING; reducing STX17 expression increased STING levels. Further knockdown of STING enhanced autophagy flux. In summary, our findings suggest that STX17 knockdown worsens AS by impeding autophagy flux and amplifying the inflammatory response. Additionally, the interaction between STX17 and STING may play a crucial role in STX17-mediated autophagy.


Assuntos
Aterosclerose , Autofagia , Células Endoteliais da Veia Umbilical Humana , Inflamação , Lipoproteínas LDL , Proteínas Qa-SNARE , Autofagia/genética , Animais , Humanos , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Camundongos , Lipoproteínas LDL/metabolismo , Técnicas de Silenciamento de Genes , Lisossomos/metabolismo , Camundongos Knockout , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/deficiência
2.
Polymers (Basel) ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611176

RESUMO

Within the realm of dental material innovation, this study pioneers the incorporation of tung oil into polyurea coatings, setting a new precedent for enhancing self-healing functionality and durability. Originating from an ancient practice, tung oil is distinguished by its outstanding water resistance and microbial barrier efficacy. By synergizing it with polyurea, we developed coatings that unite mechanical strength with biological compatibility. The study notably quantifies self-healing efficiency, highlighting the coatings' exceptional capacity to mend physical damages and thwart microbial incursions. Findings confirm that tung oil markedly enhances the self-repair capabilities of polyurea, leading to improved wear resistance and the inhibition of microbial growth, particularly against Streptococcus mutans, a principal dental caries pathogen. These advancements not only signify a leap forward in dental material science but also suggest a potential redefinition of dental restorative practices aimed at prolonging the lifespan of restorations and optimizing patient outcomes. Although this study lays a substantial foundation for the utilization of natural oils in the development of medical-grade materials, it also identifies the critical need for comprehensive cytotoxicity assays. Such evaluations are essential to thoroughly assess the biocompatibility and the safety profile of these innovative materials for clinical application. Future research will concentrate on this aspect, ensuring that the safety and efficacy of the materials align with clinical expectations for dental restorations.

3.
ESC Heart Fail ; 11(4): 2234-2248, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38629342

RESUMO

AIMS: In an era of evolving diagnostic possibilities, existing diagnostic systems are not fully sufficient to promptly recognize patients with early-stage hypertrophic cardiomyopathy (HCM) without symptomatic and instrumental features. Considering the sudden death of HCM, developing a novel diagnostic model to clarify the patients with early-stage HCM and the immunological characteristics can avoid misdiagnosis and attenuate disease progression. METHODS AND RESULTS: Three hundred eighty-five samples from four independent cohorts were systematically retrieved. The weighted gene co-expression network analysis, differential expression analysis (|log2(foldchange)| > 0.5 and adjusted P < 0.05), and protein-protein interaction network were sequentially performed to identify HCM-related hub genes. With a machine learning algorithm, the least absolute shrinkage and selection operator regression algorithm, a stable diagnostic model was developed. The immune-cell infiltration and biological functions of HCM were also explored to characterize its underlying pathogenic mechanisms and the immune signature. Two key modules were screened based on weighted gene co-expression network analysis. Pathogenic mechanisms relevant to extracellular matrix and immune pathways have been discovered. Twenty-seven co-regulated genes were recognized as HCM-related hub genes. Based on the least absolute shrinkage and selection operator algorithm, a stable HCM diagnostic model was constructed, which was further validated in the remaining three cohorts (n = 385). Considering the tight association between HCM and immune-related functions, we assessed the infiltrating abundance of various immune cells and stromal cells based on the xCell algorithm, and certain immune cells were significantly different between high-risk and low-risk groups. CONCLUSIONS: Our study revealed a number of hub genes and novel pathways to provide potential targets for the treatment of HCM. A stable model was developed, providing an efficient tool for the diagnosis of HCM.


Assuntos
Cardiomiopatia Hipertrófica , Aprendizado de Máquina , Humanos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/diagnóstico , Perfilação da Expressão Gênica/métodos , Gerenciamento Clínico , Masculino
4.
Clin Interv Aging ; 19: 639-654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706634

RESUMO

Background: The triglyceride-glucose (TYG) index is a novel and reliable marker reflecting insulin resistance. Its predictive ability for cardiovascular disease onset and prognosis has been confirmed. However, for advanced chronic heart failure (acHF) patients, the prognostic value of TYG is challenged due to the often accompanying renal dysfunction (RD). Therefore, this study focuses on patients with aHF accompanied by RD to investigate the predictive value of the TYG index for their prognosis. Methods and Results: 717 acHF with RD patients were included. The acHF diagnosis was based on the 2021 ESC criteria for acHF. RD was defined as the eGFR < 90 mL/(min/1.73 m2). Patients were divided into two groups based on their TYG index values. The primary endpoint was major adverse cardiovascular events (MACEs), and the secondary endpoints is all-cause mortality (ACM). The follow-up duration was 21.58 (17.98-25.39) months. The optimal cutoff values for predicting MACEs and ACM were determined using ROC curves. Hazard factors for MACEs and ACM were revealed through univariate and multivariate COX regression analyses. According to the univariate COX regression analysis, high TyG index was identified as a risk factor for MACEs (hazard ratio = 5.198; 95% confidence interval [CI], 3.702-7.298; P < 0.001) and ACM (hazard ratio = 4.461; 95% CI, 2.962-6.718; P < 0.001). The multivariate COX regression analysis showed that patients in the high TyG group experienced 440.2% MACEs risk increase (95% CI, 3.771-7.739; P < 0.001) and 406.2% ACM risk increase (95% CI, 3.268-7.839; P < 0.001). Kaplan-Meier survival analysis revealed that patients with high TyG index levels had an elevated risk of experiencing MACEs and ACM within 30 months. Conclusion: This study found that patients with high TYG index had an increased risk of MACEs and ACM, and the TYG index can serve as an independent predictor for prognosis.


Assuntos
Glicemia , Insuficiência Cardíaca , Nefropatias , Triglicerídeos , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico , Doença Crônica , Nefropatias/sangue , Nefropatias/diagnóstico , Nefropatias/etiologia , Triglicerídeos/sangue , Prognóstico , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA