Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 94, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902597

RESUMO

Despite recent advances in tumor diagnosis and treatment technologies, the number of cancer cases and deaths worldwide continues to increase yearly, creating an urgent need to find new methods to prevent or treat cancer. Sulforaphane (SFN), as a member of the isothiocyanates (ITCs) family, which is the hydrolysis product of glucosinolates (GLs), has been shown to have significant preventive and therapeutic cancer effects in different human cancers. Early studies have shown that SFN scavenges oxygen radicals by increasing cellular defenses against oxidative damage, mainly through the induction of phase II detoxification enzymes by nuclear factor erythroid 2-related factor 2 (Nrf2). More and more studies have shown that the anticancer mechanism of SFN also includes induction of apoptotic pathway in tumor cells, inhibition of cell cycle progression, and suppression of tumor stem cells. Therefore, the application of SFN is expected to be a necessary new approach to treating cancer. In this paper, we review the multiple molecular mechanisms of SFN in cancer prevention and treatment in recent years, which can provide a new vision for cancer treatment.


Assuntos
Anticarcinógenos , Isotiocianatos , Neoplasias , Sulfóxidos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Sulfóxidos/farmacologia , Sulfóxidos/uso terapêutico , Humanos , Neoplasias/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo
2.
Mol Cell Biochem ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441777

RESUMO

D-Galactose (D-gal) accumulation triggers the generation of oxygen free radicals, resulting in skin aging. Sulforaphene (SFE), an isothiocyanate compound derived from radish seeds, possesses diverse biological activities, including protective effects against inflammation and oxidative damage. This investigation delves into the antioxidant impact of SFE on age-related skin injury. In vivo experiments demonstrate that SFE treatment significantly improves the macro- and micro-morphology of dorsal skin. It effectively diminishes the elevation of oxidative stress biomarkers in mice skin tissue treated with D-gal, concurrently enhancing the activity of antioxidant enzymes. Additionally, SFE mitigates collagen mRNA degradation, lowers pro-inflammatory cytokine levels, and downregulates MAPK-related protein expression in the skin. Moreover, SFE supplementation reduces lipid metabolite levels and elevates amino acid metabolites, such as L-cysteine and L-histidine. These findings suggest that SFE holds promise as a natural remedy to mitigate aging induced by oxidative stress.

3.
Metab Eng ; 76: 110-119, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746296

RESUMO

p-Hydroxyacetophenone (p-HAP) and its glucoside picein are plant-derived natural products that have been extensively used in chemical, pharmaceutical and cosmetic industries owing to their antioxidant, antibacterial and antiseptic activities. However, the natural biosynthetic pathways for p-HAP and picein have yet been resolved so far, limiting their biosynthesis in microorganisms. In this study, we design and construct a biosynthetic pathway for de novo production of p-HAP and picein from glucose in E. coli. First, screening and characterizing pathway enzymes enable us to successfully establish functional biosynthetic pathway for p-HAP production. Then, the rate-limiting step in the pathway caused by a reversible alcohol dehydrogenase is completely eliminated by modulating intracellular redox cofactors. Subsequent host strain engineering via systematic increase of precursor supplies enables production enhancement of p-HAP with a titer of 1445.3 mg/L under fed-batch conditions. Finally, a novel p-HAP glucosyltransferase capable of generating picein from p-HAP is identified and characterized from a series of glycosyltransferases. On this basis, de novo biosynthesis of picein from glucose is achieved with a titer of 210.7 mg/L under fed-batch conditions. This work not only demonstrates a microbial platform for p-HAP and picein synthesis, but also represents a generalizable pathway design strategy to produce value-added compounds.


Assuntos
Vias Biossintéticas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Vias Biossintéticas/genética , Glucosídeos/genética , Glucose/genética , Glucose/metabolismo , Engenharia Metabólica
4.
Biotechnol Bioeng ; 120(1): 312-317, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226358

RESUMO

α-Aminoadipic acid (AAA) is a nonproteinogenic amino acid with potential applications in pharmaceutical, chemical and animal feed industries. Currently, AAA is produced by chemical synthesis, which suffers from high cost and low production efficiency. In this study, we engineered Escherichia coli for high-level AAA production by coupling lysine biosynthesis and degradation pathways. First, the lysine-α-ketoglutarate reductase and saccharopine dehydrogenase from Saccharomyces cerevisiae and α-aminoadipate-δ-semialdehyde dehydrogenase from Rhodococcus erythropolis were selected by in vitro enzyme assays for pathway assembly. Subsequently, lysine supply was enhanced by blocking its degradation pathway, overexpressing key pathway enzymes and improving nicotinamide adenine dineucleotide phosphate (NADPH) regeneration. Finally, a glutamate transporter from Corynebacterium glutamicum was introduced to elevate AAA efflux. The final strain produced 2.94 and 5.64 g/L AAA in shake flasks and bioreactors, respectively. This work provides an efficient and sustainable way for AAA production.


Assuntos
Ácido 2-Aminoadípico , Lisina , Ácido 2-Aminoadípico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sacaropina Desidrogenases/metabolismo
5.
Biotechnol Bioeng ; 120(2): 503-510, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319206

RESUMO

Orotate (OA) is a precursor of pyrimidine nucleotides and is widely used in food, pharmaceutical, and cosmetic industries. Although various microorganisms have been used for OA production, the production efficiency needs to be further improved for industrial application. In this study, we engineered Escherichia coli native metabolism for efficient OA production. The entire pathway was divided into the downstream OA synthesis, the midstream aspartate/glutamine supply, and the upstream glycolysis modules. First, the downstream module was optimized by disrupting pyrE to block OA consumption and release the feedback inhibition, and tuning expression of the biosynthetic genes. Second, the midstream pathway was enhanced by increasing the supply of the precursors and the cofactor nicotinamide adenine dinucleotide phosphate (NADPH). More importantly, we observed that pyrE disruption may lead to metabolic disorder as indicated by the accumulation of large amount of acetate. This problem was solved by reducing the flux of glycolysis. With these efforts, the final strain produced 80.3 g/L OA with a yield of 0.56 g/g glucose in fed-batch fermentation, which are the highest titer and yield reported so far. This work paves the way for industrial production of OA and represents as a good example of modulating cell metabolism for efficient chemical production.


Assuntos
Escherichia coli , Glicólise , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica
6.
Appl Microbiol Biotechnol ; 107(20): 6193-6204, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597019

RESUMO

ß-Arbutin is a plant-derived glycoside and widely used in cosmetic and pharmaceutical industries because of its safe and effective skin-lightening property as well as anti-oxidant, anti-microbial, and anti-inflammatory activities. In recent years, microbial fermentation has become a highly promising method for the production of ß-arbutin. However, this method suffers from low titer and low yield, which has become the bottleneck for its widely industrial application. In this study, we used ß-arbutin to demonstrate methods for improving yields for industrial-scale production in Escherichia coli. First, the supply of precursors phosphoenolpyruvate and uridine diphosphate glucose was improved, leading to a 4.6-fold increase in ß-arbutin production in shaking flasks. The engineered strain produced 36.12 g/L ß-arbutin with a yield of 0.11 g/g glucose in a 3-L bioreactor. Next, based on the substrate and product's structural similarity, an endogenous O-acetyltransferase was identified as responsible for 6-O-acetylarbutin formation for the first time. Eliminating the formation of byproducts, including 6-O-acetylarbutin, tyrosine, and acetate, resulted in an engineered strain producing 43.79 g/L ß-arbutin with a yield of 0.22 g/g glucose in fed-batch fermentation. Thus, the yield increased twofold by eliminating byproducts formation. To the best of our knowledge, this is the highest titer and yield of ß-arbutin ever reported, paving the way for the industrial production of ß-arbutin. This study demonstrated a systematic strategy to alleviate undesirable byproduct accumulation and improve the titer and yield of target products. KEY POINTS: • A systematic strategy to improve titer and yield was showed • Genes responsible for 6-O-acetylarbutin formation were firstly identified • 43.79 g/L ß-arbutin was produced in bioreactor, which is the highest titer so far.


Assuntos
Arbutina , Reatores Biológicos , Fermentação , Escherichia coli/genética , Glucose , Engenharia Metabólica/métodos
7.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685936

RESUMO

Sulforaphene (SFE) is a kind of isothiocyanate isolated from radish seeds that can prevent free-radical-induced diseases. In this study, we investigated the protective effect of SFE on oxidative-stress-induced damage and its molecular mechanism in vitro and in vivo. The results of cell experiments show that SFE can alleviate D-gal-induced cytotoxicity, promote cell cycle transformation by inhibiting the production of reactive oxygen species (ROS) and cell apoptosis, and show a protective effect on cells with H2O2-induced oxidative damage. Furthermore, the results of mice experiments show that SFE can alleviate D-galactose-induced kidney damage by inhibiting ROS, malondialdehyde (MDA), and 4-hydroxyalkenals (4-HNE) production; protect the kidney against oxidative stress-induced damage by increasing antioxidant enzyme activity and upregulating the Nrf2 signaling pathway; and inhibit the activity of pro-inflammatory factors by downregulating the expression of Toll-like receptor 4 (TLR4)-mediated inflammatory response. In conclusion, this research shows that SFE has antioxidant effects, providing a new perspective for studying the anti-aging properties of natural compounds.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Animais , Camundongos , Espécies Reativas de Oxigênio , Isotiocianatos/farmacologia , Antioxidantes/farmacologia
8.
Metab Eng ; 73: 247-255, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35987433

RESUMO

Ferulic acid (FA) is a natural methylated phenolic acid which represents various bioactivities. Bioproduction of FA suffers from insufficient methyl donor supplement and inefficient hydroxylation. To overcome these hurdles, we first activate the S-adenosylmethionine (SAM) cycle in E. coli by using endogenous genes to supply sufficient methyl donor. Then, a small protein Fre is introduced into the pathway to efficiently regenerate FADH2 for the hydroxylation. Remarkably, regeneration of these two cofactors dramatically promotes FA synthesis. Together with decreasing the byproducts formation and boosting precursor supply, the titer of FA reaches 5.09 g/L under fed-batch conditions, indicating a 20-fold improvement compared with the original producing E. coli strain. This work not only establishes a promising microbial platform for industrial level production of FA and its derivatives, but also highlights a convenient and effective strategy to enhance the biosynthesis of chemicals requiring methylation and FADH2-dependent hydroxylation.


Assuntos
Escherichia coli , Engenharia Metabólica , Ácidos Cumáricos , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxilação , Metilação , Regeneração
9.
Biotechnol Bioeng ; 119(9): 2518-2528, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35488433

RESUMO

Allantoin is an important fine chemical that can be widely used in pharmaceutical, cosmetic and agricultural industries. Currently, allantoin is mainly produced by plant extraction or chemical synthesis. Due to the cost and environmental concerns, biosynthesis of allantoin from renewable feedstock is much more desirable. However, microbial production of allantoin from simple carbon sources has not yet been achieved so far. In this study, de novo biosynthesis of allantoin was achieved by constructing an artificial biosynthetic pathway. First, screening of efficient urate oxidases and xanthine dehydrogenases enabled allantoin production from hypoxanthine, a natural intermediate in purine metabolic pathway in Escherichia coli. Then, assemble of the entire pathway resulted in 13.9 mg/L allantoin from glucose in shake flask experiments. The titer was further improved to 639.8 mg/L by enhancing the supply of the precursor, redistribution of carbon flux, and reduction of acetate. Finally, scale-up production of allantoin was conducted in a 1-L fermentor under fed-batch culture conditions, which enabled the synthesis of 2360 mg/L allantoin, representing a 170-fold increase compared with the initial strain. This study not only demonstrates the potential for industrial production of allantoin, but also provides a bacterial platform for synthesis of other purines-derived high-value chemicals.


Assuntos
Alantoína , Escherichia coli , Alantoína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Urato Oxidase/genética , Urato Oxidase/metabolismo
10.
Environ Res ; 204(Pt C): 112241, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34695428

RESUMO

In situ remediation of groundwater by zerovalent iron (ZVI)-based technology faces the problems of rapid passivation, fast agglomeration, limited range of pollutants and secondary contamination. Here a new concept of Magnesium-Aluminum (Mg-Al) alloys and in situ layered double hydroxides on is proposed for the degradation and removal of a wide variety of inorganic and organic pollutants from groundwater. The Mg-Al alloy provides the electrons for the chemical reduction and/or the degradation of pollutants while released Mg2+, Al3+ and OH- ions react to generate in situ LDH precipitates, incorporating other divalent and trivalent metals and oxyanions pollutants and further adsorbing the micropollutants. The Mg-Al alloy outperforms ZVI for treating acidic, synthetic groundwater samples contaminated by complex chemical mixtures of heavy metals (Cd2+, Cr6+, Cu2+, Ni2+ and Zn2+), nitrate, AsO33-, methyl blue, trichloroacetic acid and glyphosate. Specifically, the Mg-Al alloy achieves removal efficiency ≥99.7% for these multiple pollutants at concentrations ranging between 10 and 50 mg L-1 without producing any secondary contaminants. In contrast, ZVI removal efficiency did not exceed 90% and secondary contamination up to 220 mg L-1 Fe was observed. Overall, this study provides a new alternative approach to develop efficient, cost-effective and green remediation for water and groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ligas , Alumínio , Hidróxidos , Magnésio , Poluentes Químicos da Água/análise
11.
Metab Eng ; 68: 26-33, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487838

RESUMO

Acetaminophen (AAP) is one of the most commonly used drug ingredients that possesses antipyretic and analgesic effects. As an unnatural chemical, AAP is commercially produced by chemical processes using petroleum-derived carbohydrates, such as phenol, as raw materials, which is unsustainable and eco-unfriendly. In this study, we report design and construction of an artificial biosynthetic pathway for de novo production of AAP from simple carbon source. By exploring and expanding the substrate repertoire of natural enzymes, we identified and characterized a novel p-aminobenzoic acid (p-ABA) monooxygenase and an p-aminophenol (p-AP) N-acetyltransferase, which enabled the bacterial production of AAP from p-ABA. Then, we constructed an p-ABA over-producer by screening of p-ABA synthases and enhancing glutamine availability, resulting in 836.43 mg/L p-ABA in shake flasks in E. coli. Subsequent assembly of the entire biosynthetic pathway permitted the de novo production of AAP from glycerol for the first time. Finally, pathway engineering by dynamically regulating the expression of pathway genes via a temperature-inducible controller enabled production enhancement of AAP with a titer of 120.03 mg/L. This work not only constructs a microbial platform for AAP production, but also demonstrates design and construction of artificial biosynthetic pathways via discovering novel bioreactions based on existing enzymes.


Assuntos
Escherichia coli , Engenharia Metabólica , Acetaminofen , Vias Biossintéticas/genética , Escherichia coli/genética , Oxigenases de Função Mista/genética
12.
Biotechnol Bioeng ; 118(5): 1840-1850, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33512000

RESUMO

Maleate is one of the most important unsaturated four-carbon dicarboxylic acids. It serves as an attractive building block in cosmetic, polymer, and pharmaceutical industries. Currently, industrial production of maleate relies mainly on chemical synthesis using benzene or butane as the starting materials under high temperature, which suffers from strict reaction conditions and low product yield. Here, we propose a novel biosynthetic pathway for maleate production in engineered Escherichia coli. We screened a superior salicylate 5-hydroxylase that can catalyze hydroxylation of salicylate into gentisate with high conversion rate. Then, introduction of salicylate biosynthetic pathway and gentisate ring cleavage pathway allowed the synthesis of maleate from glycerol. Further optimizations including enhancement of precursors supply, disruption of competing pathways, and construction of a pyruvate recycling system, boosted maleate titer to 2.4 ± 0.1 g/L in shake flask experiments. Subsequent scale-up biosynthesis of maleate in a 3-L bioreactor under fed-batch culture conditions enabled the production of 14.5 g/L of maleate, indicating a 268-fold improvement compared with the titer generated by the wildtype E. coli strain carrying the entire maleate biosynthetic pathway. This study provided a promising microbial platform for industrial level synthesis of maleate, and demonstrated the highest titer of maleate production in microorganisms so far.


Assuntos
Escherichia coli/genética , Maleatos/metabolismo , Engenharia Metabólica/métodos , Ácido Chiquímico/metabolismo , Técnicas de Cultura Celular por Lotes , Vias Biossintéticas/genética , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Glicerol/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo
13.
Biotechnol Lett ; 43(9): 1821-1830, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34185215

RESUMO

PURPOSE: There are several studies on the use of RNA interference (RNAi) for gene function analysis in fungi. However, most studies on filamentous fungi are based on in vitro-transcribed or -synthesized small interfering RNA (siRNA), and only a few have reported the use of vector-based RNAi. Here we want to develop and evaluate a new vector-based RNAi method using the mouse U6 promoter to drive short hairpin RNA (shRNA) expression in the filamentous fungi. METHODS: Molecular techniques were employed to develop and evaluate a new vector-based RNAi method using the mouse U6 promoter to drive short hairpin RNA (shRNA) expression in the filamentous fungus Blakeslea trispora. RESULTS: We characterized the mouse U6 promoter and utilized it for the expression of shRNA in B. trispora. Using real-time polymerase chain reaction and western blotting analyses, we confirmed the decrease in the mRNA and protein expression of carRA, respectively, in cells transformed with the mouse U6 promoter-driven shRNA expression vector. This indicated that the shRNA was transcribed from the mouse U6 promoter and correctly processed into siRNA and that the mouse U6 promoter exhibited transcription ability in the filamentous fungi. CONCLUSIONS: The results suggest that the mouse U6 promoter that drives the expression of shRNA vectors may serve as a novel tool for RNAi induction in filamentous fungi.


Assuntos
Proteínas Fúngicas/genética , Mucorales/crescimento & desenvolvimento , RNA Interferente Pequeno/genética , Animais , Regulação Fúngica da Expressão Gênica , Camundongos , Mucorales/genética , Plasmídeos/genética , Regiões Promotoras Genéticas , Interferência de RNA
14.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34215883

RESUMO

Carbon sources represent the most dominant cost factor in the industrial biomanufacturing of products. Thus, it has attracted much attention to seek cheap and renewable feedstocks, such as lignocellulose, crude glycerol, methanol, and carbon dioxide, for biosynthesis of value-added compounds. Co-utilization of these carbon sources by microorganisms not only can reduce the production cost but also serves as a promising approach to improve the carbon yield. However, co-utilization of mixed carbon sources usually suffers from a low utilization rate. In the past few years, the development of metabolic engineering strategies to enhance carbon source co-utilization efficiency by inactivation of carbon catabolite repression has made significant progress. In this article, we provide informative and comprehensive insights into the co-utilization of two or more carbon sources including glucose, xylose, arabinose, glycerol, and C1 compounds, and we put our focus on parallel utilization, synergetic utilization, and complementary utilization of different carbon sources. Our goal is not only to summarize strategies of co-utilization of carbon sources, but also to discuss how to improve the carbon yield and the titer of target products.


Assuntos
Repressão Catabólica , Xilose , Arabinose , Glucose , Engenharia Metabólica , Redes e Vias Metabólicas
15.
Molecules ; 26(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204150

RESUMO

The purpose of this study was to develop mixed polymeric micelles with high drug loading capacity to improve the oral bioavailability of icaritin with Soluplus® and Poloxamer 407 using a creative acid-base shift (ABS) method, which exhibits the advantages of exclusion of organic solvents, high drug loading and ease of scaling-up. The feasibility of the ABS method was successfully demonstrated by studies of icaritin-loaded polymeric micelles (IPMs). The prepared IPMs were characterized to have a spherical shape with a size of 72.74 ± 0.51 nm, and 13.18% drug loading content. In vitro release tests confirmed the faster release of icaritin from IPMs compared to an oil suspension. Furthermore, bioavailability of icaritin in IPMs in beagle dogs displayed a 14.9-fold increase when compared with the oil suspension. Transcellular transport studies of IPMs across Caco-2 cell monolayers confirmed that the IPMs were endocytosed in their intact forms through macropinocytosis, clathrin-, and caveolae-mediated pathways. In conclusion, the results suggested that the mixed micelles of Soluplus® and Poloxamer 407 could be a feasible drug delivery system to enhance oral bioavailability of icaritin, and the ABS method might be a promising technology for the preparation of polymeric micelles to encapsulate poorly water-soluble weakly acidic and alkaline drugs.


Assuntos
Flavonoides/administração & dosagem , Poloxâmero/química , Polietilenoglicóis/química , Polivinil/química , Transdução de Sinais/efeitos dos fármacos , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Cavéolas/metabolismo , Clatrina/metabolismo , Cães , Estudos de Viabilidade , Flavonoides/síntese química , Flavonoides/farmacocinética , Humanos , Masculino , Micelas , Nanopartículas , Tamanho da Partícula
16.
Molecules ; 26(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068926

RESUMO

Icaritin is a promising anti-hepatoma drug that is currently being tested in a phase-III clinical trial. A novel combination of amorphization and nanonization was used to enhance the oral bioavailability of icaritin. Amorphous icaritin nanoparticles (AINs) were prepared by a reactive precipitation technique (RPT). Fourier transform infrared spectrometry was used to investigate the mechanism underlying the formation of amorphous nanoparticles. AINs were characterized via scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. Our prepared AINs were also evaluated for their dissolution rates in vitro and oral bioavailability. The resultant nanosized AINs (64 nm) were amorphous and exhibited a higher dissolution rate than that derived from a previous oil-suspension formulation. Fourier transform infrared spectroscopy (FTIR) revealed that the C=O groups from the hydrophilic chain of polymers and the OH groups from icaritin formed hydrogen bonds that inhibited AIN crystallization and aggregation. Furthermore, an oral administration assay in beagle dogs showed that Cmax and AUClast of the dried AINs formulation were 3.3-fold and 4.5-fold higher than those of the oil-suspension preparation (p < 0.01), respectively. Our results demonstrate that the preparation of amorphous drug nanoparticles via our RPT may be a promising technique for improving the oral bioavailability of poorly water-soluble drugs.


Assuntos
Precipitação Química , Flavonoides/síntese química , Nanopartículas/química , Animais , Cães , Epimedium/anatomia & histologia , Epimedium/química , Flavonoides/sangue , Flavonoides/química , Flavonoides/farmacocinética , Masculino , Nanopartículas/ultraestrutura , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
Acc Chem Res ; 52(8): 2266-2277, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31373482

RESUMO

Fighting cancer with the means of chemistry remains a tremendous challenge and defines a pressing societal need. Compounds based on synthetic organic dyes have long been recognized as vital tools for cancer diagnosis and therapy (theranostics). Fluorescence and photoacoustic imaging of cancer as well as cancer treatment protocols such as photodynamic and photothermal therapy are all photobased technologies that require chromophores. However, a serious drawback of most chromophoric molecules is photobleaching over the course of their use in biological environments, which severely compromises the desired theranostic effects. At this point, rylenecarboximide (RI) dyes with ultrahigh photostability hold enormous promise. RI stands for a homologous series of dyes consisting of an aromatic core and carboximide auxochromic groups. They possess high molar extinction coefficients and finely tunable photophysical properties. RIs such as perylenebiscarboxylic acid monoimide (PMI), perylenetetracarboxylic acid diimide (PDI), terrylenetetracarboxylic acid diimide (TDI), and quaterrylene tetracarboxylic acid diimide (QDI) have attracted great scientific attention as colorants, components of organic photovoltaics and organic field-effect transistors, as well as tools for biological applications. PDI has appeared as one of the most widely studied RI dyes for fluorescence bioimaging. Our recent breakthroughs including chemotherapy with PDI-based DNA intercalators and photothermal therapy guided by photoacoustic imaging using PDI, TDI, or QDI, define urgent needs for further scientific research and clinical translation. In this Account, we tackle the relationship between chemical structures and photophysical and pharmacologic properties of RIs aiming at new contrast and anticancer agents, which then lay the ground for further biomedical applications. First, we introduce the design concepts for RIs with a focus on their structure-property relationships. Chemical structure has an enormous impact on the fluorescent, chemotoxic, photodynamic, and photothermal performance of RIs. Next, based on the resulting performance criteria, we employ RIs for fluorescence and photoacoustic cancer imaging as well as cancer therapies. When carrying electron donating substituents, PDIs and PMIs possess high fluorescence quantum yield and red-shifted emission which qualifies them for use in cancer fluorescence imaging. Also, some fluorescent PDIs are combined with chemodrugs or developed into DNA intercalators for chemotherapy. PDI-based photosensitizers are prepared by "heavy atom" substitution, showing potential for photodynamic therapy. Further, photothermal agents using PDI, TDI, and QDI with near-infrared absorption and excellent photothermal conversion efficiency offer high promise in photothermal cancer therapy monitored by photoacoustic imaging. Finally, looking jointly at the outstanding properties of RIs and the demands of current biomedicine, we offer an outlook toward further modifications of RIs as a powerful and practical platform for advanced cancer theranostics as well as treatment of other diseases.


Assuntos
Antineoplásicos/uso terapêutico , Corantes/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Hidrocarbonetos Policíclicos Aromáticos/uso terapêutico , Animais , Antineoplásicos/química , Corantes/química , Desenho de Fármacos , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Nanopartículas/química , Nanopartículas/uso terapêutico , Técnicas Fotoacústicas/métodos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Hidrocarbonetos Policíclicos Aromáticos/química , Nanomedicina Teranóstica/métodos
18.
Biotechnol Bioeng ; 117(4): 1247-1252, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31903546

RESUMO

myo-Inositol (MI) as a dietary supplement can provide various health benefits. One major challenge to its efficient biosynthesis is to achieve proper distribution of carbon flux between growth and production. Herein, this challenge was overcome by synergetic utilization of glucose and glycerol. Specifically, glycerol was catabolized to support cell growth while glucose was conserved as the building block for MI production. Growth and production were coupled via the phosphotransferase system, and both modules were optimized to achieve efficient production. First, the optimal enzyme combination was established for the production module. It was observed that enhancing the production module resulted in both increased MI production and better cell growth. In addition, glucose was shown to inhibit glycerol utilization via carbon catabolite repression and the inhibition was released by over-expressing glycerol kinase. Furthermore, the inducible promoter was replaced by strong constitutive promoters to avoid inducer use. With these efforts, the final strain produced MI with both high titer and yield. In fed-batch cultivation, 76 g/L of MI was produced, showing scale-up potential. This study provides a promising strategy to achieve rational distribution of carbon flux.


Assuntos
Glucose/metabolismo , Glicerol/metabolismo , Inositol/biossíntese , Reatores Biológicos/microbiologia , Carbono/metabolismo , Repressão Catabólica/fisiologia , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo
19.
Microb Cell Fact ; 19(1): 56, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131831

RESUMO

The gut microbiota that inhabit our gastrointestinal tract are well known to play an important role in maintaining human health in many aspects, including facilitating the digestion and absorption of nutrients, protecting against pathogens and regulating immune system. Gut microbiota dysbiosis is associated with a lot of diseases, such as inflammatory bowel disease, allergy, obesity, cardiovascular and neurodegenerative diseases and cancers. With the increasing knowledge of the microbiome, utilization of probiotic bacteria in modulating gut microbiota to prevent and treat a large number of disorders and diseases has gained much interest. In recent years, aided by the continuous development of tools and techniques, engineering probiotic microbes with desired characteristics and functionalities to benefit human health has made significant progress. In this paper, we summarize the recent advances in design and construction of probiotics as living diagnostics and therapeutics for probing and treating a series of diseases including metabolic disorders, inflammation and pathogenic bacteria infections. We also discuss the current challenges and future perspectives in expanding the application of probiotics for disease treatment and detection. We intend to provide insights and ideas for engineering of probiotics to better serve disease therapy and human health.


Assuntos
Microbioma Gastrointestinal , Engenharia Metabólica , Probióticos/uso terapêutico , Ensaios Clínicos como Assunto , Disbiose/terapia , Humanos , Inflamação/diagnóstico , Inflamação/terapia , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/terapia , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/terapia , Neoplasias/diagnóstico , Neoplasias/terapia , Biologia Sintética
20.
Microb Cell Fact ; 19(1): 110, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448179

RESUMO

Aromatic polyketides have attractive biological activities and pharmacological properties. Different from other polyketides, aromatic polyketides are characterized by their polycyclic aromatic structure. The biosynthesis of aromatic polyketides is usually accomplished by the type II polyketide synthases (PKSs), which produce highly diverse polyketide chains by sequential condensation of the starter units with extender units, followed by reduction, cyclization, aromatization and tailoring reactions. Recently, significant progress has been made in characterization and engineering of type II PKSs to produce novel products and improve product titers. In this review, we briefly summarize the architectural organizations and genetic contributions of PKS genes to provide insight into the biosynthetic process. We then review the most recent progress in engineered biosynthesis of aromatic polyketides, with emphasis on generating novel molecular structures. We also discuss the current challenges and future perspectives in the rational engineering of type II PKSs for large scale production of aromatic polyketides.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA