Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 162(3): 580-92, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26213385

RESUMO

Although it is known that the centrioles play instructive roles in pericentriolar material (PCM) assembly and that the PCM is essential for proper centriole formation, the mechanism that governs centriole-PCM interaction is poorly understood. Here, we show that ATF5 forms a characteristic 9-fold symmetrical ring structure in the inner layer of the PCM outfitting the proximal end of the mother centriole. ATF5 controls the centriole-PCM interaction in a cell-cycle- and centriole-age-dependent manner. Interaction of ATF5 with polyglutamylated tubulin (PGT) on the mother centriole and with PCNT in the PCM renders ATF5 as a required molecule in mother centriole-directed PCM accumulation and in PCM-dependent centriole formation. ATF5 depletion blocks PCM accumulation at the centrosome and causes fragmentation of centrioles, leading to the formation of multi-polar mitotic spindles and genomic instability. These data show that ATF5 is an essential structural protein that is required for the interaction between the mother centriole and the PCM.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Citoesqueleto/metabolismo , Regulação para Baixo , Instabilidade Genômica , Células HeLa , Humanos , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
2.
Acta Pharmacol Sin ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858494

RESUMO

T cell engaging bispecific antibodies (TCBs) have recently become significant in cancer treatment. In this study we developed MSLN490, a novel TCB designed to target mesothelin (MSLN), a glycosylphosphatidylinositol (GPI)-linked glycoprotein highly expressed in various cancers, and evaluated its efficacy against solid tumors. CDR walking and phage display techniques were used to improve affinity of the parental antibody M912, resulting in a pool of antibodies with different affinities to MSLN. From this pool, various bispecific antibodies (BsAbs) were assembled. Notably, MSLN490 with its IgG-[L]-scFv structure displayed remarkable anti-tumor activity against MSLN-expressing tumors (EC50: 0.16 pM in HT-29-hMSLN cells). Furthermore, MSLN490 remained effective even in the presence of non-membrane-anchored MSLN (soluble MSLN). Moreover, the anti-tumor activity of MSLN490 was enhanced when combined with either Atezolizumab or TAA × CD28 BsAbs. Notably, a synergistic effect was observed between MSLN490 and paclitaxel, as paclitaxel disrupted the immunosuppressive microenvironment within solid tumors, enhancing immune cells infiltration and improved anti-tumor efficacy. Overall, MSLN490 exhibits robust anti-tumor activity, resilience to soluble MSLN interference, and enhanced anti-tumor effects when combined with other therapies, offering a promising future for the treatment of a variety of solid tumors. This study provides a strong foundation for further exploration of MSLN490's clinical potential.

3.
Acta Pharmacol Sin ; 44(7): 1455-1463, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36707721

RESUMO

The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses challenges to the effectiveness of neutralizing antibodies. Rational design of antibody cocktails is a realizable approach addressing viral immune evasion. However, evaluating the breadth of antibody cocktails is essential for understanding the development potential. Here, based on a replication competent vesicular stomatitis virus model that incorporates the spike of SARS-CoV-2 (VSV-SARS-CoV-2), we evaluated the breadth of a number of antibody cocktails consisting of monoclonal antibodies and bispecific antibodies by long-term passaging the virus in the presence of the cocktails. Results from over two-month passaging of the virus showed that 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 from these cocktails were highly resistant to random mutation, and there was no breakthrough after 30 rounds of passaging. As a control, antibody REGN10933 was broken through in the third passage. Next generation sequencing was performed and several critical mutations related to viral evasion were identified. These mutations caused a decrease in neutralization efficiency, but the reduced replication rate and ACE2 susceptibility of the mutant virus suggested that they might not have the potential to become epidemic strains. The 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 cocktails that picked from the VSV-SARS-CoV-2 system efficiently neutralized all current variants of concern and variants of interest including the most recent variants Delta and Omicron, as well as SARS-CoV-1. Our results highlight the feasibility of using the VSV-SARS-CoV-2 system to develop SARS-CoV-2 antibody cocktails and provide a reference for the clinical selection of therapeutic strategies to address the mutational escape of SARS-CoV-2.


Assuntos
Anticorpos Biespecíficos , COVID-19 , Humanos , SARS-CoV-2 , Terapia Combinada de Anticorpos , Testes de Neutralização , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Neutralizantes
4.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806136

RESUMO

Activating transcription factor 5 (ATF5) belongs to the activating transcription factor/cyclic adenosine monophosphate (cAMP) response element-binding protein family of basic region leucine zipper transcription factors. ATF5 plays an important role in cell stress regulation and is involved in cell differentiation and survival, as well as centrosome maintenance and development. Accumulating evidence demonstrates that ATF5 plays an oncogenic role in cancer by regulating gene expressions involved in tumorigenesis and tumor survival. Recent studies have indicated that ATF5 may also modify the gene expressions involved in other diseases. This review explores in detail the regulation of ATF5 expression and signaling pathways and elucidates the role of ATF5 in cancer biology. Furthermore, an overview of putative therapeutic strategies that can be used for restoring aberrant ATF5 activity in different cancer types is provided.


Assuntos
Fatores Ativadores da Transcrição , Neoplasias , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Humanos , Neoplasias/genética
5.
Adv Exp Med Biol ; 1248: 531-546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32185724

RESUMO

Peptides, as a large group of molecules, are composed of amino acid residues and can be divided into linear or cyclic peptides according to the structure. Over 13,000 molecules of natural peptides have been found and many of them have been well studied. In artificial peptide libraries, the number of peptide diversity could be up to 1 × 1013. Peptides have more complex structures and higher affinity to target proteins comparing with small molecular compounds. Recently, the development of targeting cancer immune checkpoint (CIP) inhibitors is having a very important role in tumor therapy. Peptides targeting ligands or receptors in CIP have been designed based on three-dimensional structures of target proteins or directly selected by random peptide libraries in biological display systems. Most of these targeting peptides work as inhibitors of protein-protein interaction and improve CD8+ cytotoxic T-lymphocyte (CTL) activation in the tumor microenvironment, for example, PKHB1, Ar5Y4 and TPP1. Peptides could be designed to regulate CIP protein degradation in vivo, such as PD-LYSO and PD-PALM. Besides its use in developing therapeutic drugs for targeting CIP, targeting peptides could be used in drug's targeted delivery and diagnosis in tumor immune therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Terapia de Alvo Molecular , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Biblioteca de Peptídeos , Peptídeos/química , Tripeptidil-Peptidase 1
6.
J Biol Chem ; 293(8): 2939-2948, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29326161

RESUMO

Activating transcription factor 5 (ATF5) is a member of the ATF/cAMP response element-binding protein family of transcription factors. ATF5 regulates stress responses and cell survival, proliferation, and differentiation and also plays a role in viral infections, cancer, diabetes, schizophrenia, and the olfactory system. Moreover, it was found to also have a critical cell cycle-dependent structural function at the centrosome. However, the mechanism that controls the localization of ATF5 at the centrosome is unclear. Here we report that ATF5 is small ubiquitin-like modifier (SUMO) 2/3-modified at a conserved SUMO-targeting consensus site in various types of mammalian cells. We found that SUMOylation of ATF5 is elevated in the G1 phase of the cell cycle and diminished in the G2/M phase. ATF5 SUMOylation disrupted the interaction of ATF5 with several centrosomal proteins and dislodged ATF5 from the centrosome at the end of the M phase. Of note, blockade of ATF5 SUMOylation deregulated the centrosome cycle, impeded ATF5 translocation from the centrosome, and caused genomic instability and G2/M arrest in HeLa cells. Our results indicate that ATF5 SUMOylation is an essential mechanism that regulates ATF5 localization and function at the centrosome.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Centrossomo/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitinas/metabolismo , Fatores Ativadores da Transcrição/química , Fatores Ativadores da Transcrição/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Centrossomo/enzimologia , Sequência Consenso , Sequência Conservada , Deleção de Genes , Instabilidade Genômica , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Transporte Proteico , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Ubiquitinas/antagonistas & inibidores , Ubiquitinas/química , Ubiquitinas/genética
7.
Appl Microbiol Biotechnol ; 103(8): 3341-3353, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30887174

RESUMO

Antigen-binding fragments (Fabs) are an important part of monoclonal antibody (mAb) therapeutics and can be cost-effectively produced using an Escherichia coli (E. coli) expression system. However, Fabs tend to form undesirable aggregates when expressed in the cytoplasm of E. coli, substantially reducing the yield of correctly folded proteins. To solve this problem, in this study, we used five Fab fragments targeting IGF1R, Her2, VEGF, RANKL, and PD-1 to develop a novel system employing the alkaline phosphatase (phoA) promoter and the heat-stable enterotoxin II (STII) leader sequence to facilitate the efficient expression and extracellular secretion of Fabs. Following phosphate starvation, all five Fab fragments were expressed in BL21(DE3), were largely secreted into the culture medium, and then, were further purified by affinity chromatography specific to the constant region of the light chain. The purified Fab products were evaluated and were found to have high purity, antigen-binding affinity, and in vitro bioactivity. The mechanism experiments revealed that (1) BL21(DE3) had significantly higher productivity than the K-12 strains investigated; (2) the secretion ability of the PhoA promoter was superior to that of the T7 promoter; and (3) signal peptide, STII, showed higher extracellular secretion efficiency than pelB. Our findings strongly suggested that the phoA-STII-facilitated extracellular production platform is highly promising for application in the manufacturing of Fab fragments for both academic and industrial purposes.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/metabolismo , Fosfatase Alcalina/genética , Afinidade de Anticorpos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Meios de Cultura/química , Enterotoxinas/genética , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
9.
Protein Expr Purif ; 138: 81-87, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26522143

RESUMO

Soluble receptor for advanced glycation end products (sRAGE), a natural inhibitor of RAGE, is considered to be a putative therapeutic molecule for a variety of diseases and a biomarker for certain conditions. To further study the function of sRAGE, recombinant rat sRAGE (rrsRAGE) was expressed and produced in a eukaryotic system. The open reading frame of rat sRAGE was cloned downstream of the methanol-inducible alcohol oxidase promoter of pPICZαA vector, and Pichia pastoris strain X-33 was used as the host strain. The expression of rrsRAGE was achieved by fermentation in a 15-L bioreactor and the resulting fermentation broth was subjected to purification on a cation exchange chromatography column. The purification of rrsRAGE reached 95% after size exclusion chromatography(SEC). The bioactivity of the purified protein was confirmed in a SH-SY5Y cell proliferation assay. The biological function of the purified rrsRAGE protein rat CCl4-induced model was then examined. Treatment with rrsRAGE resulted in significantly lower liver fibrosis and lower serum level of ALT, suggesting that sRAGE prevent liver from injury and fibrosis. In conclusion, we achieved high-efficiency production of bioactive rrsRAGE in P. pastoris.


Assuntos
Intoxicação por Tetracloreto de Carbono/prevenção & controle , Vetores Genéticos/química , Cirrose Hepática/prevenção & controle , Pichia/genética , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Animais , Sequência de Bases , Reatores Biológicos , Tetracloreto de Carbono , Intoxicação por Tetracloreto de Carbono/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Gel , Cromatografia por Troca Iônica , Clonagem Molecular , Fermentação , Expressão Gênica , Vetores Genéticos/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fases de Leitura Aberta , Pichia/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada/administração & dosagem , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia
10.
BMC Gastroenterol ; 16: 25, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26917416

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of most common and aggressive human malignancies in the world, especially, in eastern Asia, and its mortality is very high at any phase. We want to investigate mechanism of niclosamide inducing cell apoptosis in HCC. METHODS: Two hepatoma cell lines were used to evaluate activity of niclosamide inducing cell apoptosis and study its mechanism. Quantitative real-time PCR and western blotting were used in analysis of genes expression or protein active regulated by niclosamide. RESULTS: Niclosamide remarkably induced cell apoptosis in hepatoma cells. Furthermore, our study revealed that RNA-dependent protein kinase-like kinase (PERK) is activated and its expression is up-regulated in HCC cells which are exposed to niclosamide. niclosamide also significantly increase activating transcription factor 3 (ATF3), activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein-homologous protein (CHOP) expression in HCC cells. It's suggested that the function of niclosamide was abrogated by PERK inhibitor or absent ATF3. Expression of PERK and CHOP is correlated with ATF3 level in the cells. CONCLUSION: Taken together, our results indicate that ATF3 plays an integral role in ER stress activated and cell apoptosis induced by niclosamide in HCC cells. In this study, the new mechanism of niclosamide as anti-cancer we investigated, too.


Assuntos
Fator 3 Ativador da Transcrição/efeitos dos fármacos , Anti-Helmínticos/farmacologia , Apoptose/efeitos dos fármacos , Niclosamida/farmacologia , RNA Mensageiro/efeitos dos fármacos , eIF-2 Quinase/efeitos dos fármacos , Fator 3 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/efeitos dos fármacos , Fator 4 Ativador da Transcrição/genética , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Marcação In Situ das Extremidades Cortadas , Neoplasias Hepáticas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição CHOP/efeitos dos fármacos , Fator de Transcrição CHOP/genética , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , eIF-2 Quinase/metabolismo
11.
Biochem Biophys Res Commun ; 464(1): 221-228, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26116531

RESUMO

Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells.


Assuntos
Antinematódeos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Produtos do Gene tax/antagonistas & inibidores , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Niclosamida/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Apoptose , Linhagem Celular Transformada , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Linfócitos T
12.
J Exp Clin Cancer Res ; 43(1): 173, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898487

RESUMO

BACKGROUND: Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS: High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS: PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS: PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.


Assuntos
Neoplasias da Mama , Imunotoxinas , Receptores da Prolactina , Tamoxifeno , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Animais , Receptores da Prolactina/metabolismo , Receptores da Prolactina/genética , Camundongos , Imunotoxinas/farmacologia , Imunotoxinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Apoptose
13.
Biomed Pharmacother ; 174: 116565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603888

RESUMO

Neural cell adhesion molecule L1 (L1CAM) is a cell-surface glycoprotein involved in cancer occurrence and migration. Up to today, L1CAM-targeted therapy appeared limited efficacy in clinical trials although quite a few attempts by monoclonal antibody (mAb) or chimeric antigen receptor T-cell therapy (CAR-T) have been reported. Therefore, the development of new effective therapies targeting L1CAM is highly desirable. It has been demonstrated that T cell-engaging bispecific antibody (TCE) plays an effective role in cancer immunotherapy by redirecting the cytotoxic activity of CD3+ T cells to tumor cells, resulting in tumor cell death. In this study, we designed and characterized a novel bispecific antibody (CE7-TCE) based on the IgG-(L)-ScFv format, which targets L1CAM and CD3 simultaneously. In vitro, CE7-TCE induced specific killing of L1CAM-positive tumor cells through T cells. In vivo, CE7-TCE inhibited tumor growth in human peripheral blood mononuclear cell/tumor cell co-grafting models. To overcome the adaptive immune resistance (AIR) that impairs the efficacy of TCEs, we conducted a combination therapy of CE7-TCE with Pembrolizumab (anti-PD1 mAb), which enhanced the anti-tumor activity of CE7-TCE. Our results confirmed the feasibility of using L1CAM as a TCE target for the treatment of solid tumors and revealed the therapeutic potential of CE7-TCE combined with immune checkpoint inhibitors.


Assuntos
Anticorpos Biespecíficos , Molécula L1 de Adesão de Célula Nervosa , Linfócitos T , Animais , Feminino , Humanos , Camundongos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Antineoplásicos Imunológicos/farmacologia , Complexo CD3/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Molécula L1 de Adesão de Célula Nervosa/imunologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Biol Chem ; 287(41): 34683-93, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22891252

RESUMO

Human T cell leukemia virus type 1 and type 2 (HTLV-1 and -2) are two closely related retroviruses with the former causing adult T cell leukemia. HTLV-2 infection is prevalent among intravenous drug users, and the viral genome encodes the viral transactivator Tax, which is highly homologous to the transforming protein Tax from HTLV-1. However, the link between HTLV-2 infection and leukemia has not been established. In the present study, we evaluated the activity of HTLV-2 Tax in promoting aberrant proliferation of human CD4 T lymphocytes. Tax2 efficiently immortalized CD4(+) memory T lymphocytes with a CD3/TCRαß/CD4/CD25/CD45RO/CD69 immunophenotype, promoted constitutive activation of PI3K/Akt, IκB kinase/NF-κB, mitogen-activated protein kinase, and STAT3, and it also increased the level of Mcl-1. Disruption of these oncogenic pathways led to growth retardation and apoptotic cell death of the Tax2-established T cell lines. We further found that Tax2 induced autophagy by interacting with the autophagy molecule complex containing Beclin1 and PI3K class III to form the LC3(+) autophagosome. Tax2-mediated autophagy promoted survival and proliferation of the immortalized T cells. The present study demonstrated the oncogenic properties of Tax2 in human T cells and also implicated Tax2 in serving as a molecular tool to generate distinct T cell subtype lines.


Assuntos
Autofagia , Linfócitos T CD4-Positivos/metabolismo , Transformação Celular Viral , Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 2 Humano/metabolismo , Memória Imunológica , Antígenos CD/genética , Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/patologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/genética , Ativação Enzimática/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Produtos do Gene tax/genética , Infecções por HTLV-II/genética , Infecções por HTLV-II/metabolismo , Infecções por HTLV-II/patologia , Vírus Linfotrópico T Tipo 2 Humano/genética , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Leucemia de Células T/virologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
15.
Life Sci ; 323: 121713, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37088412

RESUMO

Organ fibrosis is a pathological process of fibroblast activation and excessive deposition of extracellular matrix after persistent tissue injury and therefore is a common endpoint of many organ pathologies. Multiple cellular types and soluble mediators, including chemokines, cytokines and non-peptidic factors, are implicated in fibrogenesis and the remodeling of tissue architecture. The molecular basis of the fibrotic process is complex and consists of closely intertwined signaling networks. Research has strived for a better understanding of these pathological mechanisms to potentially reveal novel therapeutic targets for fibrotic diseases. In light of new knowledge, the receptor for advanced glycation end products (RAGE) emerged as an important candidate for the regulation of a wide variety of cellular functions related to fibrosis, including inflammation, cell proliferation, apoptosis, and angiogenesis. RAGE is a pattern recognition receptor that binds a broad range of ligands such as advanced glycation end products, high mobility group box-1, S-100 calcium-binding protein and amyloid beta protein. Although the link between RAGE and fibrosis has been established, the exact mechanisms need be investigated in further studies. The aim of this review is to collect all available information about the intricate function of RAGE and its signaling cascades in the pathogenesis of fibrotic diseases within different organs. In addition, to the major ligands and signaling pathways, we discuss potential strategies for targeting RAGE in fibrosis. We emphasize the functional links between RAGE, inflammation and fibrosis that may guide further studies and the development of improved therapeutic drugs.


Assuntos
Peptídeos beta-Amiloides , Produtos Finais de Glicação Avançada , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Inflamação/metabolismo , Fibrose
16.
Heliyon ; 9(7): e17960, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37456045

RESUMO

CD22, as the B-cell malignancies antigen, has been targeted for immunotherapies through CAR-T cells, antibody-drug conjugates (ADCs) and immunotoxins via interaction of antibodies with binding domains on the receptor. We hypothesized that avidity and binding domain of antibody to target cells may have significant impact on the biological function in tumor immunotherapy, and T cell-engaging bispecific antibody (TCB) targeting CD22 could be used in the therapy of hematologic malignancies. So, to address the question, we utilized the information of six previously reported CD22 mAbs to generate CD22-TCBs with different avidity to different domains on CD22 protein. We found that the avidity of CD22-TCBs to protein was not consistent with the avidity to target cells, indicating that TCBs had different binding mode to the protein and cells. In vitro results indicated that CD22-TCBs mediated cytotoxicity depended on the avidity of antibodies to target cells rather than to protein. Moreover, distal binding domain of the antigen contributed to the avidity and biological activity of IgG-[L]-scfv-like CD22-TCBs. The T cells' proliferation, activation, cytotoxicity as well as cytokine release were compared, and G5/44 BsAb was selected for further in vivo assessment in anti-tumor activity. In vivo results demonstrated that CD22-TCB (G5/44 BsAb) significantly inhibited the tumors growth in mice. All these data suggested that CD22-TCBs could be developed as a promising candidate for B-cell malignancies therapy through optimizing the design with avidity and binding domain to CD22 target in consideration.

17.
Protein Expr Purif ; 83(1): 98-103, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22450162

RESUMO

S100A6, as a member of S100 protein family, have biological functions in cell proliferation, differentiation, morphology, cytoskeletal organization and apoptosis. In the last three decades, S100A6 has been caught more and more attention. Here, we introduced a simple and efficient method for producing high-purity recombinant human S100A6 from Escherichia coli culture with low level of endotoxin. We further demonstrated its biological activities for triggering SH-SY5Y cells apoptosis in vitro. These results can facilitate the study of physiological and pathological roles of S100A6 and other members of S100 family proteins.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas S100/biossíntese , Apoptose/efeitos dos fármacos , Sequência de Bases , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/farmacologia , Linhagem Celular Tumoral , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteína A6 Ligante de Cálcio S100 , Proteínas S100/química , Proteínas S100/isolamento & purificação , Proteínas S100/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Acta Pharm Sin B ; 12(4): 1928-1942, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847491

RESUMO

T cell engaging bispecific antibody (TCB) is an effective immunotherapy for cancer treatment. Through co-targeting CD3 and tumor-associated antigen (TAA), TCB can redirect CD3+ T cells to eliminate tumor cells regardless of the specificity of T cell receptor. Tissue factor (TF) is a TAA that involved in tumor progression. Here, we designed and characterized a novel TCB targeting TF (TF-TCB) for the treatment of TF-positive tumors. In vitro, robust T cell activation, tumor cell lysis and T cell proliferation were induced by TF-TCB. The tumor cell lysis activity was dependent upon both CD3 and TF binding moieties of the TF-TCB, and was related to TF expression level of tumor cells. In vivo, in both tumor cell/human peripheral blood mononuclear cells (PBMC) co-grafting model and established tumor models with poor T cell infiltration, tumor growth was strongly inhibited by TF-TCB. T cell infiltration into tumors was induced during the treatment. Furthermore, efficacy of TF-TCB was further improved by combination with immune checkpoint inhibitors. For the first time, our results validated the feasibility of using TF as a target for TCB and highlighted the potential for TF-TCB to demonstrate efficacy in solid tumor treatment.

19.
Virol Sin ; 37(6): 860-873, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36414178

RESUMO

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appear rapidly every few months. They have showed powerful adaptive ability to circumvent the immune system. To further understand SARS-CoV-2's adaptability so as to seek for strategies to mitigate the emergence of new variants, herein we investigated the viral adaptation in the presence of broadly neutralizing antibodies and their combinations. First, we selected four broadly neutralizing antibodies, including pan-sarbecovirus and pan-betacoronavirus neutralizing antibodies that recognize distinct conserved regions on receptor-binding domain (RBD) or conserved stem-helix region on S2 subunit. Through binding competition analysis, we demonstrated that they were capable of simultaneously binding. Thereafter, a replication-competent vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein was employed to study the viral adaptation. Twenty consecutive passages of the virus under the selective pressure of individual antibodies or their combinations were performed. It was found that it was not hard for the virus to adapt to broadly neutralizing antibodies, even for pan-sarbecovirus and pan-betacoronavirus antibodies. The virus was more and more difficult to escape the combinations of two/three/four antibodies. In addition, mutations in the viral population revealed by high-throughput sequencing showed that under the selective pressure of three/four combinational antibodies, viral mutations were not prone to present in the highly conserved region across betacoronaviruses (stem-helix region), while this was not true under the selective pressure of single/two antibodies. Importantly, combining neutralizing antibodies targeting RBD conserved regions and stem helix synergistically prevented the emergence of escape mutations. These studies will guide future vaccine and therapeutic development efforts and provide a rationale for the design of RBD-stem helix tandem vaccine, which may help to impede the generation of novel variants.


Assuntos
Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , SARS-CoV-2 , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
20.
Cell Discov ; 8(1): 16, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169121

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) continue to wreak havoc across the globe. Higher transmissibility and immunologic resistance of VOCs bring unprecedented challenges to epidemic extinguishment. Here we describe a monoclonal antibody, 2G1, that neutralizes all current VOCs and has surprising tolerance to mutations adjacent to or within its interaction epitope. Cryo-electron microscopy structure showed that 2G1 bound to the tip of receptor binding domain (RBD) of spike protein with small contact interface but strong hydrophobic effect, which resulted in nanomolar to sub-nanomolar affinities to spike proteins. The epitope of 2G1 on RBD partially overlaps with angiotensin converting enzyme 2 (ACE2) interface, which enables 2G1 to block interaction between RBD and ACE2. The narrow binding epitope but high affinity bestow outstanding therapeutic efficacy upon 2G1 that neutralized VOCs with sub-nanomolar half maximal inhibitory concentration in vitro. In SARS-CoV-2, Beta or Delta variant-challenged transgenic mice and rhesus macaque models, 2G1 protected animals from clinical illness and eliminated viral burden, without serious impact to animal safety. Mutagenesis experiments suggest that 2G1 is potentially capable of dealing with emerging SARS-CoV-2 variants in the future. This report characterized the therapeutic antibodies specific to the tip of spike against SARS-CoV-2 variants and highlights the potential clinical applications as well as for developing vaccine and cocktail therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA