Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neurosci ; 34(13): 4640-53, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24672010

RESUMO

Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM-MEF2D pathway may contribute to neurodegeneration in AT.


Assuntos
Dano ao DNA/fisiologia , Neurônios/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Células HEK293 , Humanos , Técnicas In Vitro , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Interferência de RNA/fisiologia , Superóxidos/metabolismo
2.
Genom Data ; 3: 24-27, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25485232

RESUMO

[Briefly describe the contents of the Data in Brief article. Tell the reader the repository and reference number for the data in the abstract to.] The myocyte enhancer factor 2 (MEF2) family of transcription factors is highly expressed in the brain, and constitutes a key determinant of neuronal survival, differentiation, and synaptic plasticity. However, genome-wide transcriptional profiling of MEF2-regulated genes has not yet been fully elucidated, particularly at the neural stem cell stage. Here we report the results of microarray analysis comparing mRNAs isolated from human neural progenitor/stem cells (hNPCs) derived from embryonic stem cells expressing a control vector versus progenitors expressing a constitutively-active form of MEF2 (MEF2CA), which increases MEF2 activity. Microarray experiments were performed using the Illumina Human HT-12 V4.0 expression beadchip (GEO#: GSE57184). By comparing vector-control cells to MEF2CA cells, microarray analysis identified 1880 unique genes that were differentially expressed. Among these genes, 1121 genes were upregulated and 759 genes were down-regulated. Our results provide a valuable resource for identifying transcriptional targets of MEF2 in hNPCs.

3.
Exp Neurol ; 236(2): 298-306, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22575597

RESUMO

HIV/gp120 transgenic mice manifest neuropathological features similar to HIV-associated neurocognitive disorders (HAND) in humans, including astrogliosis, microglia activation, and decreased neuronal synapses. Here, proteomic screening of synaptosomes from HIV/gp120 transgenic mice was conducted to determine potential neuronal markers and drug targets associated with HAND. Synaptosomes from 13 month-old wild-type (wt) and HIV/gp120 transgenic mouse cortex were subjected to tandem mass tag (TMT) labeling and subsequent analysis using an LTQ-Orbitrap mass spectrometer in pulsed-Q dissociation (PQD) mode for tandem mass spectrometry (MS/MS). A total of 1301 proteins were identified in both wt and HIV/gp120 transgenic mice. Three of the most differentially-regulated proteins were validated by immunoblotting. To elucidate putative pathways associated with the proteomic profile, 107 proteins manifesting a ≥1.5 fold change in expression were analyzed using a bioinformatics pathway analysis tool. This analysis revealed direct or indirect involvement of the phosphotidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, a well-known neuronal survival pathway. Immunoblots confirmed a lower phospho (p)Akt/Akt ratio in synaptosomes from HIV/gp120 transgenic animals compared to wt, suggesting that this neuroprotective pathway was inactivated in the HIV/gp120 transgenic brain. Based on this information, we then compared immunoblots of pAkt/Akt in the forebrains of these mice as well as in human postmortem brain. We observed a significant decrease in the pAkt/Akt ratio in synaptosomes and forebrain of HIV/gp120 transgenic compared to wt mice, and a similar decrease in human forebrain from HAND patients compared to neurologically unimpaired HIV+ and HIV- controls. Moreover, mechanistic insight into an additional pathway for decreased Akt activity in HIV/gp120 mouse brains and human HAND brains was shown to occur via S-nitrosylation of Akt protein, a posttranslational modification known to inhibit Akt activity and contribute to neuronal cell injury and death. Thus, MS proteomic profiling in the HIV/gp120 transgenic mouse predicted dysregulation of the PI3K/Akt pathway observed in human brains with HAND, providing evidence that this mouse is a useful disease model and that the Akt pathway may provide multiple drug targets for the treatment of HIV-related dementias.


Assuntos
Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/metabolismo , Doenças Neurodegenerativas/metabolismo , Sinaptossomos/fisiologia , Espectrometria de Massas em Tandem/métodos , Proteínas Virais Reguladoras e Acessórias/genética , Adulto , Idoso , Animais , Feminino , Proteína gp120 do Envelope de HIV/fisiologia , Infecções por HIV/genética , Infecções por HIV/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Vias Neurais/química , Vias Neurais/patologia , Vias Neurais/virologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/virologia , Fármacos Neuroprotetores/antagonistas & inibidores , Fármacos Neuroprotetores/química , Sinaptossomos/química , Sinaptossomos/virologia , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/química , Inativação de Vírus
4.
Nat Med ; 15(12): 1407-13, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19915593

RESUMO

Huntington's disease is caused by an expanded CAG repeat in the gene encoding huntingtin (HTT), resulting in loss of striatal and cortical neurons. Given that the gene product is widely expressed, it remains unclear why neurons are selectively targeted. Here we show the relationship between synaptic and extrasynaptic activity, inclusion formation of mutant huntingtin protein (mtHtt) and neuronal survival. Synaptic N-methyl-D-aspartate-type glutamate receptor (NMDAR) activity induces mtHtt inclusions via a T complex-1 (TCP-1) ring complex (TRiC)-dependent mechanism, rendering neurons more resistant to mtHtt-mediated cell death. In contrast, stimulation of extrasynaptic NMDARs increases the vulnerability of mtHtt-containing neurons to cell death by impairing the neuroprotective cyclic AMP response element-binding protein (CREB)-peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) cascade and increasing the level of the small guanine nucleotide-binding protein Rhes, which is known to sumoylate and disaggregate mtHtt. Treatment of transgenic mice expressing a yeast artificial chromosome containing 128 CAG repeats (YAC128) with low-dose memantine blocks extrasynaptic (but not synaptic) NMDARs and ameliorates neuropathological and behavioral manifestations. By contrast, high-dose memantine, which blocks both extrasynaptic and synaptic NMDAR activity, decreases neuronal inclusions and worsens these outcomes. Our findings offer a rational therapeutic approach for protecting susceptible neurons in Huntington's disease.


Assuntos
Mutação , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Animais , Morte Celular/fisiologia , Cromossomos Artificiais de Levedura , Proteína Huntingtina , Memantina/farmacologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Nucleares/genética , Técnicas de Patch-Clamp , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/fisiologia , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA