Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 14(1): e1007169, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364887

RESUMO

Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação a DNA/genética , Distonia/genética , Mutação , Rede Nervosa/fisiologia , Neurônios/fisiologia , Proteínas Nucleares/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/metabolismo , Plasticidade Neuronal/genética
2.
Altern Ther Health Med ; 22 Suppl 2: 6-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27433836

RESUMO

Context • Telomeres are repeated deoxyribonucleic acid (DNA) sequences (TTAGGG) that are located on the 5' ends of chromosomes, and they control the life span of eukaryotic cells. Compelling evidence has shown that the length of a person's life is dictated by the limited number of times that a human cell can divide. The enzyme telomerase has been shown to bind to and extend the length of telomeres. Thus, strategies for activating telomerase may help maintain telomere length and, thus, may lead to improved health during aging. Objective • The current study intended to investigate the effects of several natural compounds on telomerase activity in an established cell model of telomere shortening (ie, IMR90 cells). Design • The research team designed an in vitro study. Setting • The study was conducted at Roskamp Institute in Sarasota, FL, USA. Intervention • The tested single compounds were (1) α-lipoic acid, (1) green tea extract, (2) dimethylaminoethanol L-bitartrate (DMAE L-bitartrate), (3) N-acetyl-L-cysteine hydrochloride (HCL), (4) chlorella powder, (5) L-carnosine, (6) vitamin D3, (7) rhodiola PE 3%/1%, (8) glycine, (9) French red wine extract, (10) chia seed extract, (11) broccoli seed extract, and (12) Astragalus (TA-65). The compounds were tested singly and as blends. Outcome Measures • Telomerase activity for single compounds and blends of compounds was measured by the TeloTAGGG telomerase polymerase chain reaction (PCR) enzyme-linked immunosorbent assay (ELISA). The 4 most potent blends were investigated for their effects on cancer-cell proliferation and for their potential effects on the cytotoxicity and antiproliferative activity of a chemotherapeutic agent, the topoisomerase I inhibitor topotecan. The benefits of 6 population doublings (PDs) were measured for the single compounds, and the 4 blends were compared to 3 concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Results • Certain of the compounds increased telomerase activity, and combinations of the top-ranking compounds were able to increase telomerase activity significantly, from 51% to 290%, relative to controls. Conclusions • The results have confirmed that many naturally occurring compounds hold the potential to activate telomerase and that certain of those compounds have demonstrated synergistic effects to produce more potent blends. Given the relationship between telomere shortening, aging, and the decline of tissue function, it is reasonable to hypothesize that such telomerase-activating blends may have health-promoting benefits, particularly in relation to aging-associated conditions. Further investigation of such blends in human studies that are designed to evaluate safety and the effects on telomere length are thus warranted.


Assuntos
Antineoplásicos/farmacologia , Telomerase/efeitos dos fármacos , Telômero/efeitos dos fármacos , Células Cultivadas , Chlorella , Humanos , Neoplasias , Telomerase/metabolismo
3.
Neuroscience ; 371: 455-468, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29289717

RESUMO

DYT1 dystonia is a neurological disease caused by dominant mutations in the TOR1A gene, encoding for the endoplasmic reticulum (ER)-resident protein torsinA. Recent reports linked expression of the DYT1-causing protein with dysregulation of eIF2α, a key component of the cellular response to ER stress known as the unfolded protein response (UPR). However, the response of the DYT1 mammalian brain to acute ER stress inducers has not been evaluated in vivo. We hypothesized that torsinA regulates the neuronal UPR and expression of its mutant form would alter this process. TorsinA was post-transcriptionally upregulated upon acute ER stress in different models, suggesting a role in this response. Moreover, increased basal phosphorylation of eIF2α in DYT1 transgenic rats was associated with an abnormal response to acute ER stress. Finally, an unbiased RNA-Seq-based transcriptomic analysis of embryonic brain tissue in heterozygous and homozygous DYT1 knockin mice confirmed the presence of eIF2α dysregulation in the DYT1 brain. In sum, these findings support previous reports linking torsinA function, eIF2α signaling and the neuronal response to ER stress in vivo. Furthermore, we describe novel protocols to investigate neuronal ER stress in cultured neurons and in vivo.


Assuntos
Encéfalo/metabolismo , Distonia Muscular Deformante/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/patologia , Fármacos do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos Transgênicos , Ratos Sprague-Dawley , Ratos Transgênicos , Transcriptoma , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia , Regulação para Cima
4.
Proteomics Clin Appl ; 11(9-10)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28371386

RESUMO

PURPOSE: Long-term consequences of combined pyridostigmine bromide (PB) and permethrin (PER) exposure in C57BL6/J mice using a well-characterized mouse model of exposure to these Gulf War (GW) agents were explored at the protein level. EXPERIMENTAL DESIGN: We used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane-bound protein fractions from brain samples using two orthogonal isotopic labeling LC-MS/MS proteomic approaches-stable isotope dimethyl labeling and iTRAQ. RESULTS: The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. CONCLUSIONS AND CLINICAL RELEVANCE: The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation. Collectively, our work identified key pathways which were chronically impacted in the mouse CNS following acute GW agent exposure, this may lead to the identification of potential targets for therapeutic intervention in the future. Long-term consequences of combined PB and PER exposure in C57BL6/J mice using a well-characterized mouse model of exposure to these GW agents were explored at the protein level. Expanding on earlier work, we used orthogonal proteomic approaches to identify pathways that are chronically impacted in the mouse CNS due to semiacute GW agent exposure early in life. These analyses were performed on soluble and membrane-bound protein fractions from brain samples using two orthogonal isotopic labeling LC-MS/MS proteomic approaches-stable isotope dimethyl labeling and iTRAQ. The use of these approaches allowed for greater coverage of proteins than was possible by either one alone and revealed both distinct and overlapping datasets. This combined analysis identified changes in several mitochondrial, as well as immune and inflammatory pathways after GW agent exposure. The work discussed here provides insight into GW agent exposure dependent mechanisms that adversely affect mitochondrial function and immune and inflammatory regulation at 5 months postexposure to PB + PER.


Assuntos
Mitocôndrias/patologia , Síndrome do Golfo Pérsico/imunologia , Síndrome do Golfo Pérsico/metabolismo , Proteômica , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Golfo Pérsico/complicações , Síndrome do Golfo Pérsico/patologia
5.
PLoS One ; 12(4): e0176634, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28453542

RESUMO

Gulf War Illness (GWI), which affects at least one fourth of the 700,000 veterans deployed to the Gulf War (GW), is characterized by persistent and heterogeneous symptoms, including pain, fatigue and cognitive problems. As a consequence, this illness remains difficult to diagnose. Rodent models have been shown to exhibit different symptomatic features of GWI following exposure to particular GW agents (e.g. pyridostigmine bromide, permethrin and DEET) and/or stress. Preclinical analyses have shown the activation of microglia and astroglia as a pathological hallmark in these mouse and rat models. Although much has been learned in recent years from these different rodent models and independent clinical studies, characterization studies to identify overlapping features of GWI in animals and humans have been missing. Thus, we aimed to identify biomarkers that co-occur in the plasma of rodent models of GWI and human GWI patients. We observed increases of multiple phospholipid (PL) species across all studied cohorts. Furthermore, these data suggested dysfunction within ether and docosahexaenoic acid and arachidonic acid containing PL species in relation to GWI. As these PL species play a role in inflammatory processes, these findings suggest a possible role for inflammatory imbalance in GWI. Overall, we show that the peripheral lipid disturbances are present both in human GWI patients and in the preclinical rodent models of GWI, highlighting the importance of lipidomics as a potential platform for further biomarker discovery and supporting the value of GW agent exposed models of GWI.


Assuntos
Síndrome do Golfo Pérsico/sangue , Fosfolipídeos/sangue , Veteranos , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos
6.
Stem Cell Reports ; 9(1): 92-107, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28579396

RESUMO

THAP1 (THAP [Thanatos-associated protein] domain-containing, apoptosis-associated protein 1) is a ubiquitously expressed member of a family of transcription factors with highly conserved DNA-binding and protein-interacting regions. Mutations in THAP1 cause dystonia, DYT6, a neurologic movement disorder. THAP1 downstream targets and the mechanism via which it causes dystonia are largely unknown. Here, we show that wild-type THAP1 regulates embryonic stem cell (ESC) potential, survival, and proliferation. Our findings identify THAP1 as an essential factor underlying mouse ESC survival and to some extent, differentiation, particularly neuroectodermal. Loss of THAP1 or replacement with a disease-causing mutation results in an enhanced rate of cell death, prolongs Nanog, Prdm14, and/or Rex1 expression upon differentiation, and results in failure to upregulate ectodermal genes. ChIP-Seq reveals that these activities are likely due in part to indirect regulation of gene expression.


Assuntos
Diferenciação Celular , Sobrevivência Celular , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Distonia/genética , Distonia/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Mutação
7.
Toxicology ; 372: 22-33, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27931520

RESUMO

Gulf War Illness (GWI) affects 25% of veterans from the 1990-1991 Gulf War (GW) and is accompanied by damage to the brain regions involved in memory processing. After twenty-five years, the chronic pathobiology of GWI is still unexplained. To address this problem, we examined the long-term consequences of GW exposures in an established GWI mouse model to identify biological processes that are relevant to the chronic symptoms of GWI. Three-month old male C57BL6 mice were exposed for 10days to GW agents (pyridostigmine bromide and permethrin). Barnes Maze testing conducted at 15- and 16-months post-exposure revealed learning and memory impairment. Immunohistochemical analyses showed astroglia and microglia activation in the hippocampi of exposed mice. Proteomic studies identified perturbation of mitochondria function and metabolomics data showed decreases in the Krebs cycle compounds, lactate, ß-hydroxybutyrate and glycerol-3 phosphate in the brains of exposed mice. Lipidomics data showed decreases in fatty acids, acylcarnitines and phospholipids, including cardiolipins in the brains of exposed mice. Pilot biomarker studies showed that plasma from exposed mice and veterans with GWI had increases in odd-chain, and decreases in long-chain, acylcarnitines compared to their respective controls. Very long-chain acylcarnitines were decreased in veterans with GWI compared to controls. These studies suggest that mitochondrial lipid disturbances might be associated with GWI and that further investigation is required to determine its role in the pathophysiology of this illness. Targeting mitochondrial function may provide effective therapies for GWI, and that lipid abnormalities could serve as biomarkers of GWI.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/metabolismo , Síndrome do Golfo Pérsico/metabolismo , Adulto , Animais , Biomarcadores/sangue , Química Encefálica/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Neurotóxicas/psicologia , Síndrome do Golfo Pérsico/sangue
8.
Artigo em Inglês | MEDLINE | ID: mdl-26793076

RESUMO

Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component that includes memory impairment as well as neurological and musculoskeletal deficits. Previous studies have shown that in the First Persian Gulf War conflict (1990-1991) exposure to Gulf War (GW) agents, such as pyridostigmine bromide (PB) and permethrin (PER), were key contributors to the etiology of GWI. For this study, we used our previously established mouse model of GW agent exposure (10 days PB+PER) and undertook an extensive lifelong neurobehavioral characterization of the mice from 11 days to 22.5 months post exposure in order to address the persistence and chronicity of effects suffered by the current GWI patient population, 24 years post-exposure. Mice were evaluated using a battery of neurobehavioral testing paradigms, including Open Field Test (OFT), Elevated Plus Maze (EPM), Three Chamber Testing, Radial Arm Water Maze (RAWM), and Barnes Maze (BM) Test. We also carried out neuropathological analyses at 22.5 months post exposure to GW agents after the final behavioral testing. Our results demonstrate that PB+PER exposed mice exhibit neurobehavioral deficits beginning at the 13 months post exposure time point and continuing trends through the 22.5 month post exposure time point. Furthermore, neuropathological changes, including an increase in GFAP staining in the cerebral cortices of exposed mice, were noted 22.5 months post exposure. Thus, the persistent neuroinflammation evident in our model presents a platform with which to identify novel biological pathways, correlating with emergent outcomes that may be amenable to therapeutic targeting. Furthermore, in this work we confirmed our previous findings that GW agent exposure causes neuropathological changes, and have presented novel data which demonstrate increased disinhibition, and lack of social preference in PB+PER exposed mice at 13 months after exposure. We also extended upon our previous work to cover the lifespan of the laboratory mouse using a battery of neurobehavioral techniques.

9.
PLoS One ; 10(3): e0119579, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785457

RESUMO

Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component such as memory deficits, neurological, and musculoskeletal problems. There are ample data that demonstrate that exposure to Gulf War (GW) agents, such as pyridostigmine bromide (PB) and pesticides such as permethrin (PER), were key contributors to the etiology of GWI post deployment to the Persian GW. In the current study, we examined the consequences of acute (10 days) exposure to PB and PER in C57BL6 mice. Learning and memory tests were performed at 18 days and at 5 months post-exposure. We investigated the relationship between the cognitive phenotype and neuropathological changes at short and long-term time points post-exposure. No cognitive deficits were observed at the short-term time point, and only minor neuropathological changes were detected. However, cognitive deficits emerged at the later time point and were associated with increased astrogliosis and reduction of synaptophysin staining in the hippocampi and cerebral cortices of exposed mice, 5 months post exposure. In summary, our findings in this mouse model of GW agent exposure are consistent with some GWI symptom manifestations, including delayed onset of symptoms and CNS disturbances observed in GWI veterans.


Assuntos
Córtex Cerebral/fisiopatologia , Hipocampo/fisiopatologia , Memória de Longo Prazo/efeitos dos fármacos , Permetrina/toxicidade , Síndrome do Golfo Pérsico/fisiopatologia , Brometo de Piridostigmina/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica , Guerra do Golfo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Golfo Pérsico/induzido quimicamente , Síndrome do Golfo Pérsico/metabolismo , Síndrome do Golfo Pérsico/patologia , Sinaptofisina/antagonistas & inibidores , Sinaptofisina/genética , Sinaptofisina/metabolismo , Fatores de Tempo
10.
Neurotoxicol Teratol ; 40: 74-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24140745

RESUMO

For two decades, 25% of the veterans who served in the 1991 Gulf War (GW) have been living with Gulf War Illness (GWI), a chronic multisymptom illness. Evidence suggests that brain structures involved in cognitive function may be affected in GWI. Gulf War agents such as the acetylcholinesterase (AChE) inhibitor pyridostigmine bromide (PB) and the pesticide permethrin (PER) are considered key etiogenic factors in GWI. We therefore developed a mouse model of GW agent exposure by co-administering PB and PER and showed that this model exhibits cognitive impairment and anxiety, and increased astrogliosis at chronic post-exposure time-points. Since GW agents inhibit AChE, we hypothesized that PB+PER exposure will modulate phosphatidylcholine (PC) and sphingomyelin (SM), which are reservoirs of phosphocholine required for endogenous ACh synthesis. Lipidomic analyses showed that PC and SM were elevated in the brains of exposed compared to control mice. Brain ether PC (ePC) species were increased but lyso-platelet activating factors (lyso-PAF) that are products of ePC were decreased in exposed animals compared to controls. Catalase expression (a marker for peroxisomes) was increased in GW agent exposed mice compared to controls. Ether PC and lyso-PAF modulation was also evident in the plasma of GW agent exposed mice compared to controls. These studies suggest peroxisomal and lysosomal dysfunction in the brain at a chronic post-exposure timepoint following GW agent exposure. Our studies provide a new direction for GWI research, which will be useful for developing suitable therapies for treating GWI.


Assuntos
Química Encefálica/efeitos dos fármacos , Inibidores da Colinesterase/toxicidade , Inseticidas/toxicidade , Permetrina/toxicidade , Síndrome do Golfo Pérsico/induzido quimicamente , Fosfatidilcolinas/análise , Brometo de Piridostigmina/toxicidade , Animais , Modelos Animais de Doenças , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos , Síndrome do Golfo Pérsico/metabolismo , Fosforilcolina/análise , Esfingomielinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA