Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Behav Brain Res ; 419: 113680, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34822947

RESUMO

Conversion of the cellular prion protein (PrPC) into the scrapie form (PrPSc) is the leading step to the development of transmissible spongiform encephalopathies (TSEs), still incurable neurodegenerative disorders. Interaction of PrPC with cellular and synthetic ligands that induce formation of scrapie-like conformations has been deeply investigated in vitro. Different nucleic acid (NA) sequences bind PrP and convert it to ß-sheet-rich or unfolded species; among such NAs, a 21-mer double-stranded DNA, D67, was shown to induce formation of PrP aggregates that were cytotoxic. However, in vivo effects of these PrP-DNA complexes were not explored. Herein, aggregates of recombinant full-length PrP (rPrP23-231) induced by interaction with the D67 aptamer were inoculated into the lateral ventricle of Swiss mice and acute effects were investigated. The aggregates had no influence on emotional, locomotor and motor behavior of mice. In contrast, mice developed cognitive impairment and hippocampal synapse loss, which was accompanied by intense activation of glial cells in this brain region. Our results suggest that the i.c.v. injection of rPrP:D67 aggregates is an interesting model to study the neurotoxicity of aggregated PrP in vivo, and that glial cell activation may be an important step for behavioral and cognitive dysfunction in prion diseases.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Hipocampo/efeitos dos fármacos , Proteínas Priônicas/farmacologia , Sinapses/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Ventrículos Laterais/efeitos dos fármacos , Masculino , Camundongos
2.
Data Brief ; 28: 104986, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32462060

RESUMO

This article presents the statistical analysis data from Drosophila melanogaster development (from larvae to adult) and learning and memory retention behavior of a Pavlovian conditioning in male and female flies exposed to copper. While the full data sets are available In the article: Copper decrease associative learning and memory in D. melanogaster, this data-in-brief article includes the detailed statistical analysis performed. Data demonstrates Statistica Software analysis between the subject part of the analysis: 2 treatments x 2 sexes x 2 ages and within subject part of the analysis: 2 treatments x 2 sex x 2 ages x 4 times, repeated measures.

3.
Nat Commun ; 10(1): 3890, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488835

RESUMO

Neurological complications affecting the central nervous system have been reported in adult patients infected by Zika virus (ZIKV) but the underlying mechanisms remain unknown. Here, we report that ZIKV replicates in human and mouse adult brain tissue, targeting mature neurons. ZIKV preferentially targets memory-related brain regions, inhibits hippocampal long-term potentiation and induces memory impairment in adult mice. TNF-α upregulation, microgliosis and upregulation of complement system proteins, C1q and C3, are induced by ZIKV infection. Microglia are found to engulf hippocampal presynaptic terminals during acute infection. Neutralization of TNF-α signaling, blockage of microglial activation or of C1q/C3 prevent synapse and memory impairment in ZIKV-infected mice. Results suggest that ZIKV induces synapse and memory dysfunction via aberrant activation of TNF-α, microglia and complement. Our findings establish a mechanism by which ZIKV affects the adult brain, and point to the need of evaluating cognitive deficits as a potential comorbidity in ZIKV-infected adults.


Assuntos
Encéfalo/virologia , Sinapses/virologia , Replicação Viral , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Inflamação , Aprendizagem , Masculino , Memória , Transtornos da Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Neurônios/virologia , Terminações Pré-Sinápticas/metabolismo , Receptores Tipo I de Interleucina-1/genética , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Behav Brain Res ; 333: 150-160, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28668282

RESUMO

Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening.


Assuntos
Sintomas Comportamentais/etiologia , Encéfalo/efeitos dos fármacos , Transtornos do Olfato/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/etiologia , alfa-Sinucleína/toxicidade , Animais , Encéfalo/metabolismo , Células Cultivadas , Discriminação Psicológica/efeitos dos fármacos , Modelos Animais de Doenças , Embrião de Mamíferos , Humanos , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Mesencéfalo/citologia , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/toxicidade , Reconhecimento Psicológico/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA