Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Neurochem Res ; 49(5): 1373-1386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38512424

RESUMO

Interleukin 3 (IL-3) is a well-known pleiotropic cytokine that regulates the proliferation and differentiation of hematopoietic progenitor cells, triggering classical signaling pathways such as JAK/STAT, Ras/MAPK, and PI3K/Akt to carry out its functions. Interestingly, the IL-3 receptor is also expressed in non-hematopoietic cells, playing a crucial role in cell survival. Our previous research demonstrated the expression of the IL-3 receptor in neuron cells and its protective role in neurodegeneration. Glutamate, a principal neurotransmitter in the central nervous system, can induce cellular stress and lead to neurotoxicity when its extracellular concentrations surpass normal levels. This excessive glutamate presence is frequently observed in various neurological diseases. In this study, we uncover the protective role of IL-3 as an inhibitor of glutamate-induced cell death, analyzing the cytokine's signaling pathways during its protective effect. Specifically, we examined the relevance of JAK/STAT, Ras/MAPK, and PI3 K signaling pathways in the molecular mechanism triggered by IL-3. Our results show that the inhibition of JAK, ERK, and PI3 K signaling pathways, using pharmacological inhibitors, effectively blocked IL-3's protective role against glutamate-induced cell death. Additionally, our findings suggest that Bcl-2 and Bax proteins may be involved in the molecular mechanism triggered by IL-3. Our investigation into IL-3's ability to protect neuronal cells from glutamate-induced damage offers a promising therapeutic avenue with potential clinical implications for several neurological diseases characterized by glutamate neurotoxicity.


Assuntos
Interleucina-3 , Neuroblastoma , Humanos , Ácido Glutâmico/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Interleucina-3 , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Neurochem Res ; 48(7): 2093-2103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36790580

RESUMO

Huntington's disease (HD) is a disease characterized by the progressive degeneration of nerve cells in the brain. DNA damage has been implicated in many neurological disorders; however, the association between this damage and the impaired signaling related to neurodegeneration is still unclear. The transcription factor c-AMP-responsive element binding protein (CREB) has a relevant role in the neuronal plasticity process regulating the expression of several genes, including brain-derived neurotrophic factor (BDNF). Here we analyzed the direct link between DNA damage and the expression of genes involved in neuronal plasticity. The study was performed in model cell lines STHdhQ7 (wild type) and STHdhQ111 (HD model). Treatment with Etoposide (Eto) was used to induce double-strand breaks (DSBs) to evaluate the DNA damage response (DDR) and the expression of synaptic plasticity genes. Eto treatment induced phosphorylation of ATM (p-ATM) and H2AX (γH2AX), markers of DDR, in both cell lines. Interestingly, upon DNA damage, STHdhQ7 cells showed increased expression of activity-regulated cytoskeleton associated protein (Arc) and BDNF when compared to the HD cell line model. Additionally, Eto induced CREB activation with a differential localization of its co-activators in the cell types analyzed. These results suggest that DSBs impact differentially the gene expression patterns of plasticity genes in the normal cell line versus the HD model. This effect is mediated by the impaired localization of CREB-binding protein (CBP) and histone acetylation in the HD model. Our results highlight the role of epigenetics and DNA repair on HD and therefore we suggest that future studies should explore in depth the epigenetic landscape on neuronal pathologies with the goal to further understand molecular mechanisms and pinpoint therapeutic targets.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Dano ao DNA , Transdução de Sinais , Plasticidade Neuronal
3.
Mar Drugs ; 18(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650394

RESUMO

The increment of non-communicable chronic diseases is a constant concern worldwide, with type-2 diabetes mellitus being one of the most common illnesses. A mechanism to avoid diabetes-related hyperglycemia is to reduce food digestion/absorption by using anti-enzymatic (functional) ingredients. This research explored the potential of six common Chilean seaweeds to obtain anti-hyperglycemic polyphenol extracts, based on their capacity to inhibit key enzymes related with starch digestion. Ethanol/water hot pressurized liquid extraction (HPLE), which is an environmentally friendly method, was studied and compared to conventional extraction with acetone. Total polyphenols (TP), antioxidant activity, cytotoxicity and inhibition capacity on α-glucosidase and α-amylase were analyzed. Results showed that the Durvillaea antarctica (cochayuyo) acetone extract had the highest TP content (6.7 ± 0.7 mg gallic acid equivalents (GAE)/g dry seaweed), while its HPLE ethanol/water extract showed the highest antioxidant activity (680.1 ± 11.6 µmol E Trolox/g dry seaweed). No extract affected cell viability significantly. Only cochayuyo produced extracts having relevant anti-enzymatic capacity on both studied enzymes, showing a much stronger inhibition to α-glucosidase (even almost 100% at 1000 µg/mL) than to α-amylase. In conclusion, from the Chilean seaweeds considered in this study, cochayuyo is the most suitable for developing functional ingredients to moderate postprandial glycemic response (starchy foods), since it showed a clear enzymatic inhibition capacity and selectivity.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Polifenóis/farmacologia , Alga Marinha , Amido/metabolismo , Chile , Diabetes Mellitus Tipo 2/tratamento farmacológico , Digestão/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Hiperglicemia/tratamento farmacológico , Oceanos e Mares , Polifenóis/uso terapêutico
4.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324056

RESUMO

An important hallmark in cancer cells is the increase in glucose uptake. GLUT1 is an important target in cancer treatment because cancer cells upregulate GLUT1, a membrane protein that facilitates the basal uptake of glucose in most cell types, to ensure the flux of sugar into metabolic pathways. The dysregulation of GLUT1 is associated with numerous disorders, including cancer and metabolic diseases. There are natural products emerging as a source for inhibitors of glucose uptake, and resveratrol is a molecule of natural origin with many properties that acts as antioxidant and antiproliferative in malignant cells. In the present review, we discuss how GLUT1 is involved in the general scheme of cancer cell metabolism, the mechanism of glucose transport, and the importance of GLUT1 structure to understand the inhibition process. Then, we review the current state-of-the-art of resveratrol and other natural products as GLUT1 inhibitors, focusing on those directed at treating different types of cancer. Targeting GLUT1 activity is a promising strategy for the development of drugs aimed at treating neoplastic growth.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Neoplasias/metabolismo , Resveratrol/farmacologia , Animais , Humanos
5.
J Cell Biochem ; 118(6): 1330-1340, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27862234

RESUMO

Interleukin-3 (IL-3) is a well-characterized growth factor in hematopoietic cells, but it is also expressed in other cell types with poorly described functions. Many studies have provided evidence that IL-3 plays an important role in cell survival. We have previously shown that IL-3 is able to increase glucose uptake in HEK293 cells, suggesting that this factor requires sustained glucose metabolism to promote cell survival. In this study, we demonstrate that IL-3 contributes to cell survival under oxidative stress, a prominent feature in the pathophysiology of cancer, diabetes, and neurodegenerative diseases, as well as in the aging process. Our results suggest a molecular mechanism that involves signaling pathways mediated by PI-3k/Akt and Erk. Altogether, these findings show an important role for IL-3 in supporting the viability of non-hematopoietic systems. J. Cell. Biochem. 118: 1330-1340, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Glucose/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Interleucina-3/metabolismo , Morte Celular , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Molecules ; 22(3)2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28272357

RESUMO

Resveratrol-a polyphenol of natural origin-has been the object of massive research in the past decade because of its potential use in cancer therapy. However, resveratrol has shown an extensive range of cellular targets and effects, which hinders the use of the molecule for medical applications including cancer and type 2 diabetes. Here, we review the latest advances in understanding how resveratrol modulates glucose uptake, regulates cellular metabolism, and how this may be useful to improve current therapies. We discuss challenges and findings regarding the inhibition of glucose uptake by resveratrol and other polyphenols of similar chemical structure. We review alternatives that can be exploited to improve cancer therapies, including the use of other polyphenols, or the combination of resveratrol with other molecules and their impact on glucose homeostasis in cancer and diabetes.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Glucose/metabolismo , Estilbenos/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Transporte Biológico/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Sinergismo Farmacológico , Homeostase/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/química , Estilbenos/uso terapêutico
7.
Molecules ; 23(1)2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29267250

RESUMO

Resveratrol is a polyphenolic natural compound produced by a variety of crops. Currently, resveratrol is considered a multi-target anti-cancer agent with pleiotropic activity, including the ability to prevent the proliferation of malignant cells by inhibiting angiogenesis and curtailing invasive and metastatic factors in many cancer models. However, the molecular mechanisms mediating resveratrol-specific effects on lymphoma cells remain unknown. To begin tackling this question, we treated the Burkitt's lymphoma cell line Ramos with resveratrol and assessed cell survival and gene expression. Our results suggest that resveratrol shows a significant anti-proliferative and pro-apoptotic activity on Ramos cells, inducing the DNA damage response, DNA repairing, and modulating the expression of several genes that regulate the apoptotic process and their proliferative activity.


Assuntos
Antineoplásicos/química , Resveratrol/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfoma de Burkitt , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Resveratrol/farmacologia
8.
Foods ; 12(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37685242

RESUMO

Low-temperature vacuum drying (LTVD) has shown great potential for drying vegetables. It could avoid excessive degradations of active compounds with potential therapeutic agents. In this study, the effect on several relevant bioactive compounds, anti-inflammatory activity, and anti-proliferative activity of broccoli (Brassica oleracea var. italica) were evaluated. Effects of other drying methods, including vacuum drying (VD), convective drying (CD), infrared drying (IRD), and freeze drying (FD), were also comparatively evaluated. The results of all dried samples showed high polyunsaturated fatty acid contents (of up to 71.3%) and essential amino acid contents (of up to 8.63%). The LTVD method stands out above the other drying methods, since it obtained the highest content of total phenols, chlorogenic acid, and ferulic acid. Both the LTVD and CD samples demonstrated high anti-inflammatory and anti-proliferative activities. These CD and LTVD samples were also the most active against the breast carcinoma MDA-MB-23 cell line. Due to the good retention of bioactive compounds via LTVD, the obtained dried broccoli here can be used in a near time as an ingredient for the development of novel natural products with anti-inflammatory and anti-proliferative effects.

9.
Front Plant Sci ; 14: 1095179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275254

RESUMO

This study evaluated the effects of different drying methods (freeze drying, vacuum drying, infrared drying, convective drying, and sun drying) on the biological properties of berries from the Chilean murta (Ugni molinae Turcz) shrub. Physical-chemical properties (proximal composition, dietary fiber, sugars) were determined. Total phenolic content through the method of Folin-Ciocalteau, the profile of phenol compounds was determined by HPLC, and antioxidant potential by DPPH and ORAC assays were also evaluated. The topic anti-inflammatory effect was evaluated by mice´s ear edema, and in vitro anti-tumoral activity was tested by MTT assay. The chemical properties of dried berries differed significantly based on the drying method: freeze-dried murta berries showed increased total phenolic content extracted over fresh and dried samples. In addition, this lyophilized extract stood out in its antioxidant potential, in both assays evaluated (DPPH and ORAC), compared to the other drying methods. Notwithstanding, vacuum- and infrared-dried murta also showed a higher ORAC value. Antioxidant potential was significantly associated with phenolic compounds catechin and pyrogallol, which were the most abundant phenolic compounds present in all samples. The anti-inflammatory activity was most effective under freeze-drying and vacuumdrying conditions. Moreover, vacuum drying and infrared drying best preserved the anti-tumoral effect on cancer cells.

10.
Med Microbiol Immunol ; 201(3): 371-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22622619

RESUMO

Herpes simplex virus type 1 (HSV-1) is the most common pathogenic cause of sporadic acute encephalitis and it produces latent persistent infection lifelong in infected individuals. Brain inflammation is associated with activation of glial cells, which can detect pathogen-associated molecular patterns (PAMPs) through a variety of pattern-recognition receptors (PRR), including Toll-like receptors (TLRs). In this study, we evaluated the expression and activation of TLR2, TLR3, and TLR4 in HSV-1-infected astrocyte and neuronal primary cultures. Our results showed a clear induction in TLR2 and TLR4 expression in astrocytes as early as 1 h after HSV-1 infection, whereas no significant change was observed in neurons. In addition, infected astrocytes showed increased levels of interferon regulatory factors IRF3 and IRF7, interferon ß (INFß), interleukin 6 (IL6), and serum amyloid A (SAA3) transcripts, as well as phospho-IRF3 protein. These effects seemed to be dependent on viral replication since previous treatment of the cells with acyclovir resulted in low levels of TLRs expression and activation even after 4 h post-infection. These results suggest that reactivation of HSV-1 at the central nervous system (CNS) would likely induce and activate TLR2 and TLR4 receptors directly through interaction of astrocytes with the pathogen and also indirectly by endogenous ligands produced locally, such as serum amyloid protein, potentiating the neuroinflammatory response.


Assuntos
Astrócitos/metabolismo , Astrócitos/virologia , Herpesvirus Humano 1/imunologia , Proteína Amiloide A Sérica/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Regulação para Cima , Animais , Células Cultivadas , Herpesvirus Humano 1/patogenicidade , Interleucina-6/metabolismo , Ligantes , Camundongos , Neurônios/metabolismo , Neurônios/virologia
11.
FEBS Open Bio ; 12(8): 1509-1522, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35538662

RESUMO

DNA damage induces the activation of many different signals associated with repair or cell death, but it is also connected with physiological events, such as adult neurogenesis and B-cell differentiation. DNA damage induces different signaling pathways, some of them linked to important metabolic changes. The mTORC1 pathway has a central role in the regulation of growth processes and cell division in response to environmental changes and also controls protein synthesis, lipid biogenesis, nucleotide synthesis, and expression of glycolytic genes. Here, we report that double-strand breaks induced with etoposide affect the expression of genes encoding different enzymes associated with specific metabolic pathways in Ramos cells. We also analyzed the role of mTOR signaling, demonstrating that double-strand breaks induce downregulation of mTOR signaling. Specific inhibition of mTORC1 using rapamycin also induced changes in the expression of metabolic genes. Finally, we demonstrated that DNA damage and rapamycin can regulate glucose uptake. In summary, our findings show that etoposide and rapamycin affect the expression of metabolic genes as well as apoptotic and proliferation markers in Ramos cells, increasing our understanding of cancer metabolism.


Assuntos
Dano ao DNA , Serina-Treonina Quinases TOR , Etoposídeo/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
12.
J Cell Biochem ; 110(6): 1471-80, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20506349

RESUMO

Interleukin-3 (IL-3) and granulocyte/macrophage colony-stimulating factor (GM-CSF) are two of the best-characterized cell survival factors in hematopoietic cells; these factors induce an increase in Akt activity in multiple cell lines, a process thought to be involved in cellular survival. It is known that growth factors require sustained glucose metabolism to promote cell survival. It has been determined that IL-3 and GM-CSF signal for increased glucose uptake in hematopoietic cells. Interestingly, receptors for IL-3 and GM-CSF are present in several non-hematopoietic cell types but their roles in these cells have been poorly described. In this study, we demonstrated the expression of IL-3 and GM-CSF receptors in HEK293 cells and analyzed their effect on glucose uptake. In these cells, both IL-3 and GM-CSF, increased glucose uptake. The results indicated that this increase involves the subcellular redistribution of GLUT1, affecting glucose transporter levels at the cell surface in HEK293 cells. Also the data directly demonstrates that the PI 3-kinase/Akt pathway is an important mediator of this process. Altogether these results show a role for non-insulin growth factors in the regulation of GLUT1 trafficking that has not yet been directly determined in non-hematopoietic cells.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Glucose/farmacocinética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-3/farmacologia , Transporte Biológico/efeitos dos fármacos , Western Blotting , Linhagem Celular , Glucose/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
J Alzheimers Dis ; 14(3): 259-69, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18599953

RESUMO

Herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) belong to the family Herpesviridae, the subfamily Alphaherpesvirinae, and the genus Simplexvirus. They are ubiquitous, neurotropic, and the most common pathogenic cause of sporadic acute encephalitis in humans. Herpes simplex encephalitis (HSE) is associated with a high mortality rate and significant neurological, neuropsychological, and neurobehavioral sequelae, which afflict patients for life. HSV-1 has been suggested as an environmental risk factor for Alzheimer's disease. However, the mechanisms involved in HSV-1 infection that may trigger the neurodegenerative process are still unknown. In general, HSV-1 induced cytoskeletal alterations reported to date involve the overall disruption of one or more elements of the cytoskeleton in cell lines. Axonal injury has recently attracted attention as a key predictor for the outcome of a number of brain disorders. Here we show that infection of mice neuronal cultures with HSV-1 result in marked neurite damage and neuronal death. Furthermore, in this in vitro model of infection, neurons manifested considerable alterations in microtubule dynamics and tau hyperphosphorylation. These results suggest a possible link between HSV-1 infection and neuronal cytoskeletal disruption.


Assuntos
Citoesqueleto/patologia , Encefalite por Herpes Simples/complicações , Herpesvirus Humano 1/isolamento & purificação , Degeneração Neural/patologia , Degeneração Neural/virologia , Western Blotting , Células Cultivadas , Citoesqueleto/metabolismo , Encefalite por Herpes Simples/metabolismo , Imunofluorescência , Humanos , Hibridização in Situ Fluorescente , Degeneração Neural/metabolismo , Neuritos/patologia , Fosforilação , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo
14.
Front Cell Neurosci ; 12: 505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692913

RESUMO

Herpes simplex virus type 1 (HSV-1) is a neurotropic virus able to reach the central nervous system (CNS) after primary infection in oronasal mucosa. HSV-1 establishes latency inside neurons due the repression of its gene expression process, which is related to periodic reactivations in response to cellular stress conditions, constituting a risk factor for neurodegenerative diseases such as Alzheimer's disease (AD). The immediate-early gene Arc plays an essential role in neuronal morphology, synaptic plasticity and memory formation. Arc acts as a hub protein, interacting with components of the endocytic machinery required for AMPA receptor (AMPAR) recycling as well as with proteins of the post-synaptic density and actin cytoskeleton. However, to date, no studies have evaluated whether persistent neurotropic HSV-1 infection modulates the expression or function of Arc protein in brain tissue. Here, we report that neuronal in vivo and in vitro infection of HSV-1 significantly increases Arc protein levels, showing a robust perinuclear distribution in neuronal cell lines, a process that is dependent on an active HSV-1 replication cycle. Finally, we found that silencing Arc protein caused a decrease in HSV-1 proteins and viral progeny, suggesting that Arc is involved in the lifecycle of HSV-1. Our studies strongly suggest that pathogenicity of HSV-1 neuronal reactivations in humans could be mediated in part by Arc neuronal upregulation and its potential role in endocytic trafficking and AMPA-neuronal function impairment. Further studies are necessary to define whether this phenomenon could have repercussions in cognition and learning processes in infected individuals.

15.
BMC Neurosci ; 8: 82, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17915029

RESUMO

BACKGROUND: Interleukin-3 (IL-3) is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known. RESULTS: In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and analyzed its influence on amyloid beta (Abeta)-treated cells. In these cells, IL-3 can activate at least three classical signalling pathways, Jak/STAT, Ras/MAP kinase and the PI 3-kinase. Viability assays indicated that IL-3 might play a neuroprotective role in cells treated with Abeta fibrils. It is of interest to note that our results suggest that cell survival induced by IL-3 required PI 3-kinase and Jak/STAT pathway activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein Bcl-2. CONCLUSION: Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against neurodegenerative agents like Abeta.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Neurônios/metabolismo , Animais , Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Camundongos , Neurônios/enzimologia , Transdução de Sinais/fisiologia
16.
FEBS Open Bio ; 6(10): 1000-1007, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27761359

RESUMO

The polyphenol nordihydroguaiaretic acid (NDGA) has antineoplastic properties, hence it is critical to understand its action at the molecular level. Here, we establish that NDGA inhibits glucose uptake and cell viability in leukemic HL-60 and U-937 cell lines. We monitored hexose uptake using radio-labeled 2-deoxyglucose (2DG) and found that the inhibition by NDGA followed a noncompetitive mechanism. In addition, NDGA blocked hexose transport in human red blood cells and displaced prebound cytochalasin B from erythrocyte ghosts, suggesting a direct interaction with the glucose transporter GLUT1. We propose a model for the mechanism of action of NDGA on glucose uptake. Our study shows for the first time that NDGA can act as inhibitor of the glucose transporter GLUT1.

17.
Biochem J ; 381(Pt 2): 495-501, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15018615

RESUMO

We studied the expression and function of the IL (interleukin)-3 and IL-5 family of receptors in male germ cells. RT (reverse transcription)-PCR showed expression of mRNAs encoding the alpha and beta subunits of the IL-3 and IL-5 receptors in human testis, and the presence of IL-3 and IL-5 receptors alpha and beta proteins was confirmed by immunoblotting with anti-alpha and anti-beta antibodies. The immunolocalization studies showed expression of these receptors in the germ line in the human testis and in human and bovine ejaculated spermatozoa. Functional studies with bull spermatozoa indicated that IL-3 signalled for increased uptake of hexoses in these cells at picomolar concentrations compatible with expression of functional high-affinity IL-3 receptors in these cells. In contrast, IL-5 failed to induce increased hexose uptake in bull spermatozoa. Experiments using HL-60 eosinophils that express functional IL-3 and IL-5 receptors confirmed that IL-3, but not IL-5, signalled for increased hexose uptake. Our findings suggest that differential signalling for increased hexose uptake by heteromeric high-affinity IL-3 and IL-5 receptors in mammalian spermatozoa is a property that depends on the identity of the alpha-subunit forming part of the alphabeta-complex and is not a property specific to the germ cells.


Assuntos
Hexoses/metabolismo , Interleucina-3/metabolismo , Interleucina-5/metabolismo , Transdução de Sinais/genética , Espermatozoides/metabolismo , Animais , Bovinos , Linhagem Celular Tumoral , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/química , Células Germinativas/metabolismo , Células HL-60/química , Células HL-60/metabolismo , Células-Tronco Hematopoéticas/química , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interleucina-3/genética , Interleucina-3/farmacologia , Interleucina-3/fisiologia , Interleucina-5/genética , Interleucina-5/farmacologia , Interleucina-5/fisiologia , Masculino , Subunidades Proteicas/genética , RNA Mensageiro/genética , Receptores de Interleucina/genética , Receptores de Interleucina-3/genética , Receptores de Interleucina-5 , Sêmen/citologia , Espermatozoides/química , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Testículo/química , Testículo/metabolismo
18.
Virus Res ; 205: 63-72, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26031763

RESUMO

Herpes simplex virus type-1 (HSV-1) is ubiquitous and is able to establish a lifelong persistent latent infection in neurons of infected individuals. It has been estimated that in approximately 70% of the population over 50 years old, the virus enters the brain and infects neurons, and possibly undergoes recurrent reactivation episodes during lifetime, especially in immunodepressed individuals. We previously showed that the sensors AMP-dependent kinase (AMPK) and Sirtuin 1 (Sirt1), involved in survival pathways and neuroprotection, were affected during the course of HSV-1 infection. To evaluate if natural activators of the AMPK/Sirt1 axis, such as Resveratrol and Quercetin could reduce viral propagation and/or counteract the effects of neuronal infection, we analyzed progeny virion production, neuronal viability and neurodegenerative events during HSV-1 infection. We found that the activators of AMPK/Sirt1 axis, increased the viability of infected neurons, significantly reduced the viral titer in the supernatant and the expression of viral genes. More importantly, pretreatment of neurons with Resveratrol or Quercetin significantly reduced the levels of caspase-3 cleaved- and hyperphosphorylated tau associated with HSV-1 infection. These results suggest that activators of the AMPK/Sirt1 axis could be potentially useful in reducing the risk of HSV-1 productive infection in neurons and the cellular damage associated with reactivation episodes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Suplementos Nutricionais/análise , Ativadores de Enzimas/farmacologia , Herpes Simples/enzimologia , Herpesvirus Humano 1/fisiologia , Neurônios/virologia , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Humanos , Neurônios/efeitos dos fármacos , Quercetina/farmacologia , Resveratrol , Sirtuína 1/genética , Estilbenos/farmacologia
19.
Neuroreport ; 14(18): 2403-9, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14663200

RESUMO

In this study we have used the transgenic mouse model Tg2576 to analyze the involvement of anomalous loss of regulation of cdk5 and the stress kinases JNK and p38 in brain neuronal death as related to neurodegenerative disorders such as Alzheimer's disease. Previous studies on hippocampal cells led us to the discovery that the cdk5/p35 complex is activated in neurodegeneration, a finding that was confirmed later in the transgenic mouse model. Here we show a link between the cdk5 system and JNK and p38 phosphoproteins, as an alternative pathway to neuronal death. Brains of the Tg2576 transgenic mice overexpressing amyloid precursor protein exhibited immunoreactivity with the phosphoproteins p-JNK, p-p38 and the GTPase protein Rac1 surrounding neuritic plaques. A significant increase in the immunodetection of JNK and p38 phosphoproteins in the Tg2576 mouse compared with wild type controls confirmed these findings. The significant increase in co-immunoprecipitation of p-JNK, p-p38 and Rac1 proteins with cdk5 in the transgenic mouse provided evidence for these interactions. At the cellular level, p-JNK and cdk5 colocalized in the cytoplasm of the cell bodies and neurites of brain cortical areas of the transgenic mouse. The present evidence suggests a cellular link between the cdk5 system and the stress kinase JNK and p38 pathways in an in vivo model. This study sheds new light on the pathogenesis of neuronal degeneration processes such as those occurring in Alzheimer's disease.


Assuntos
Doença de Alzheimer/enzimologia , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Proteínas Quinases JNK Ativadas por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Quinase 5 Dependente de Ciclina , Quinases Ciclina-Dependentes/análise , MAP Quinase Quinase 4 , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/análise , Proteínas Quinases Ativadas por Mitógeno/análise , Proteínas Quinases p38 Ativadas por Mitógeno
20.
Theriogenology ; 60(6): 1083-95, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12935848

RESUMO

The granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine capable of stimulating proliferation, maturation and function of hematopoietic cells. Receptors for this cytokine are composed of two subunits, alpha and beta, and are expressed on myeloid progenitors and mature mononuclear phagocytes, monocytes, eosinophils and neutrophils, as well as in other nonhematopietic cells. We have recently demonstrated that bull spermatozoa express functional GM-CSF receptors that signal for increased glucose and Vitamin C uptake. In this study, we analyzed the expression of GM-CSF in bovine and human germ cells and its influence in bovine sperm motility. Reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization and immunoblotting analysis demonstrated that adult bovine and human testes expressed GM-CSF. In addition, immunolocalization studies confirmed the presence of GM-CSF in the germ cell line in bovine and human testes. Computer-assisted evaluation of patterns of sperm motility demonstrated that the addition of GM-CSF enhances several parameters of sperm motility in the presence of glucose or fructose substrates.


Assuntos
Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/química , Animais , Bovinos , Fertilização in vitro/veterinária , Frutose/administração & dosagem , Glucose/administração & dosagem , Humanos , Immunoblotting , Hibridização In Situ , Masculino , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA