Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838811

RESUMO

Hibiscus sabdariffa possess great versatility to be used as an ingredient for a whole range of products with natural-based ingredients, which are growing in popularity due to the health benefits of bioactive compounds (BC). Therefore, the objective of this study was to characterize the BC content in Hibiscus beverages and to evaluate their in vitro bioaccessibility. Results showed significant differences (p < 0.05) in the total contents of BC prior to the in vitro intestinal digestion. Hibiscus acid was the most abundant compound identified. Thirty-five compounds were identified in the Hibiscus beverage at the initial stage, while a maximum of 15 compounds were quantified in the different fractions of gastrointestinal digestion. After digestion, significant differences were found compared with the initial content of BC. That phenolic acids were the less bioaccessible group, while flavonoids were the most diverse. Principal components analysis showed different clusters and changes in the profiles of BC present at the initial stage and those bioaccessible, showing that intestinal digestion significantly affects the BC profile of the beverage.


Assuntos
Hibiscus , Antioxidantes/análise , Flavonoides/análise , Bebidas/análise , Digestão , Extratos Vegetais
2.
J Food Sci Technol ; 60(5): 1580-1589, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37033320

RESUMO

The aim of this study was to evaluate whether the addition of strawberry by-products (pulp and achene) and thermosonication offers a nectar with a potential contribution of health and safety benefits. Strawberry nectar with 0, 10 and 20% of strawberry by-products (SB) was subjected to thermosonication (24 kHz) at 70 and 80% for 8 min at 50 °C. Total soluble solids, pH, polyphenol oxidase (PO) and pectin methylesterase (PME) activities, total soluble phenols (TSP), ascorbic acid (AA), anthocyanins and antioxidant capacity (AOX) were evaluated. Microbiological reduction and inactivation of Escherichia coli was also determined. A limited activity was observed in PO and PME related to the SB percentage added. TSP, AA, anthocyanins, and AOX were increased due to the different percentages of SB added to the nectar. A reduction of aerobic mesophiles (1.28 Log CFU/mL), molds and yeast counts (1.23 Log CFU/mL) were achieved by thermosonication. E. coli inactivation was approximately 1 log CFU/mL in 20% SB nectar at 80% amplitude, 8 min at 50 °C, but increased during storage at 6 °C (0.915-5.86 Log CFU/mL). Thermosonication showed the possibility of employing strawberry by-products in nectars, improving the use of agro-industrial residues by non-thermal technologies.

3.
Food Res Int ; 174(Pt 1): 113581, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986526

RESUMO

The absorption and metabolism of bioactive compounds (BCs) in a Hibiscus sabdariffa drink (HbD) were evaluated by the in vivo bioavailability of organic acids (OA) and phenolic compounds (PC's). An acute single-blind clinical study in humans was conducted. Twelve volunteers consumed a HbD and a control drink (CD). Urine and plasma samples were taken after consuming both beverages. OA and PC's of the beverages (HbD and CD) and the biological samples (urine and plasma) were characterized by HPLC-DAD-MS. Thirthy-eight compounds in HbD and four CD were detected and quantified, equivalent to 937.37 mg and 1.22 mg per 60 mL, respectively. Hibiscus acid was the most abundant OA in both drinks. Additionally, hydroxycinnamic acids, flavonoids, anthocyanins, and anthocyanidins were also detected in HbD, although their amount represented 10% of the total BCs. 25 different metabolites were identified, 15 in urine and 23 in plasma. The microbiota extensively biotransformed PCs and their amount was lower than organic acids, particularly hibiscus acid and hydroxycitric acid. The colonic metabolites derived from PCs and organic acids would be behind the anti-inflammatory bioactivity described for Hibiscus sabdariffa L. (Malvaceae family). However, further studies are necessary to evaluate the metabolites responsible for their anti-inflammatory activity.


Assuntos
Hibiscus , Extratos Vegetais , Humanos , Antocianinas/análise , Anti-Inflamatórios/farmacologia , Bebidas/análise , Disponibilidade Biológica , Método Simples-Cego
4.
Food Chem (Oxf) ; 5: 100150, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36483086

RESUMO

Tejuino, is a Mexican fermented beverage prepared by germination-fermentation or nixtamalization-fermentation (artisanal and commercial mode respectively) of maize. The aim of this study was to evaluate the gut metabolites, volatile, and phenolic compounds (PC) produced by the indigestible fraction (IF) of Tejuino during an in vitro colonic fermentation. Twenty-six PC in the IF were identified; the hydroxycinnamic acids (30-40 %) were the most abundant. In the IF of Tejuino pyrogallol, and urolithins were identified. Some of the representative PC of maize as maysin derivatives (apimaysin and 3-methoxymaysin) (flavonoids). The quantification of acetic and butyric acid become notable after 6 h of the colonic fermentation of IF of Tejuino. Ninety-seven volatile compounds were found, and the PCA shows the predominant compounds as short chain fatty acids, esters of organic acids and indole derivatives. These results suggest that Tejuino could be an important source of metabolites with high biological value.

5.
Food Chem ; 360: 130051, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34020365

RESUMO

Two of the most important Mexican plant-foods are tomato (Solanum lycopersicum L.) and husk tomato (Physalis ixocarpa Brot.). In this study three objectives were followed: i) to evaluate the bioaccessible phenolic compounds (PC) in T and HT during upper gastrointestinal digestion, ii) to in vitro ferment the indigestible fractions of the samples to evaluate the short-chain fatty acids (SCFA) production, iii) the microbial metabolites, bioconverted PC and volatile organic compounds (VOCs) generated during the fermentation. Vanillic acid was the most bioaccessible PC and after 48 h, 3-hydroxyphenylacetic acid was the most abundant microbial metabolite identified in both samples. The identification of VOCs belonging to terpenes (and derivatives) group in T and HT can be product of the microbial metabolism of carotenoids. The study shows new knowledge of the in vitro intestinal digestion and fermentation of T and HT final compounds with biological potential which should be evaluated in further studies.


Assuntos
Colo/microbiologia , Ácidos Graxos Voláteis/metabolismo , Fermentação , Frutas/química , Microbioma Gastrointestinal , Fenóis/metabolismo , Disponibilidade Biológica , Carotenoides/metabolismo , Digestão , Solanum lycopersicum , Fenilacetatos/metabolismo , Physalis , Ácido Vanílico/metabolismo , Compostos Orgânicos Voláteis/metabolismo
6.
Food Res Int ; 132: 109036, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32331660

RESUMO

Hibiscus sabdariffa (Hb) calyces are a source of dietary fiber (DF) and phenolic compounds. Agave fructans (AF) and oligofructans (OF) are considered as soluble DF. The aim of the study was to investigate changes in gut microbiota upon feeding predigested Hb, AF, OF or Mix (Hb/AF) to a dynamic, validated in vitro model of the human colon (TIM-2), using sequencing of the V3-V4 regions of the 16S rRNA gene. A pooled human fecal microbiota was used. Production of short-chain fatty acids (SCFAs), branched-chain fatty acids (BSCFAs) and ammonia was also assessed. Samples were taken after 0, 24, 48 and 72 h. Principal component (PC) analysis of fermentation metabolites and relative abundance of genera was carried out, and extracted factors were based on eigenvalues >1.0 and explained >60% of variance. Fermentation of samples resulted in different SCFAS concentrations. The highest butyric acid production was on AF and OF, while the molar ratio of SCFAS on Hb was 63:18:18 for acetic, propionic and butyric acid, respectively. BSCFAS were also produced upon feeding the studied substrates, but in much lower concentrations. About 45 bacteria genera were identified and 10 of these were the most abundant changing during the fermentation time, amongst which a high relative abundance in Bifidobacterium, Bacteroides and Catenibacterium, that changed during the fermentation time depending of substrate. Hb feeding after 48 h led to Bifidobacterium being the most abundant genus. Two PCs were identified: after 24 h of fermentation PC1 was highly influenced by Bifidobacterium and Prevotella, which was related with Hb and SIEM feeding. Evaluation of the changes in metabolites and gut microbiota composition during colonic fermentation in a validated in vitro model provides a complete and reliable view of the potential prebiotic effect of different dietary fibers.


Assuntos
Agave/genética , Colo/metabolismo , Frutanos/química , Frutanos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hibiscus/química , Adulto , Amônia/metabolismo , Bactérias/classificação , Bactérias/genética , Butiratos/metabolismo , Colo/microbiologia , Fibras na Dieta , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Fermentação , Humanos , Pessoa de Meia-Idade , Prebióticos/análise , RNA Ribossômico 16S
7.
Food Res Int ; 118: 89-95, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30898357

RESUMO

Mango (Mangifera indica L.) peel (MP), is a by-product from the industrial processing to obtain juices and concentrates, and is rich in polyphenols and dietary fiber (DF). DF content of dried MP is about 40%. The aim of this study was to determine the prebiotic potential of this by-product submitting predigested mango ('Ataulfo') peel to a dynamic in vitro model of the human colon. Dried MPs were predigested following an enzymatic treatment and separating digestion products and undigested material by diafiltration. The predigested samples were fermented in a validated in vitro model of the colon (TIM-2) using human fecal microbiota and sampled after 0, 24, 48 and 72h. A carbohydrate mixture of standard ileal effluent medium (SIEM) was used as control. Production of short chain fatty acids (SCFA), branched chain fatty acids (BCFA) and ammonia profiles were determined in both lumen and dialysates. Microbiota composition was determined by sequencing 16S rRNA gene V3-V4 region. Principal component (PC) analysis of fermentation metabolites and relative abundance of genera was carried out. Fermentation of MP resulted in SCFA concentrations resembling those found in the SIEM experiments, with a 56:19:24 molar ratio for acetic, propionic and butyric acids, respectively. BCFA and ammonia were produced in similar concentrations in both samples. About 80 bacterial genera were identified after fermentation of MP, with an 83% relative abundance of Bifidobacterium at 24h. Three PC were identified; PC1 was influenced by a high Bifidobacterium abundance and low metabolites production. PC2 resulted in a decrease of other genera and an increase of metabolites studied. The relative abundance at 72h in MP was distributed over 4 genera Bifidobacterium, Lactobacillus, Dorea, and Lactococcus. Our results suggest MP as a potential prebiotic ingredient.


Assuntos
Colo/microbiologia , Digestão , Microbioma Gastrointestinal/fisiologia , Mangifera/química , Prebióticos , Adulto , Amônia/metabolismo , Bactérias/classificação , Bactérias/genética , Bifidobacterium/metabolismo , Butiratos/metabolismo , Fibras na Dieta/análise , Ácidos Graxos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Fermentação , Microbioma Gastrointestinal/genética , Humanos , Lactobacillus , Masculino , RNA Ribossômico 16S/metabolismo
8.
Curr Pharm Des ; 25(32): 3434-3456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31604412

RESUMO

Functional foods have been used worldwide since ancient times, particularly, the prehispanic civilizations used several plants as medicinal foods. Nowadays, many Mexicans populations preserve their traditions and dietary patterns based on corn, beans, besides other endemic vegetables, mainly diverse varieties of chili, tomatoes and other plant-foods. It is well known that each species has a special complex mixture of bioactive compounds (BC) in which each component contributes to its overall bioactivity. These BC are plant metabolites that benefit human health by means of anti-inflammatory, immune-modulatory, and antioxidant effects. However, it becomes bioactive at human body when these BC must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. Thus, the intestinal microbiota is the key factor in the mediation of the physiological functions of dietary polyphenols. In fact, limited information is available, especially on dietary phytochemicals and metabolism in commonly available Mexican plant-foods. In this review, the bioaccesibility and bioavailability major BC from traditional Mexican plant-foods products and its potential health benefits will be discussed. Besides, we compile the scientific reports and the evidence of the impact of some Mexican plant-foods on the gut microbiota dynamic composition, specific microbial metabolites and its possible contributions to human health.


Assuntos
Alimento Funcional , Microbioma Gastrointestinal , Polifenóis/farmacocinética , Disponibilidade Biológica , Humanos , México , Plantas Comestíveis/química , Verduras
9.
Nutrients ; 11(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336740

RESUMO

Mango (Mangifera indica L.) is a tropical fruit which is considered to be a source of dietary fiber (DF) and phenolic compounds (PCs). In this study, high DF mango-based fruit bars were developed from whole mango (peel and pulp). The bars were evaluated for their nutritional composition, the bioaccesibility of PCs during gastrointestinal digestion, and the PCs metabolites profile after in vitro colonic fermentation. The amount of DF in a 30 g portion of mango bars was 9.5 g, i.e., 35% of the recommended daily intake. Phenolic acids such as gallic acid; cinnamic acids, such as ferulic, coumaric, and caffeic acids; flavonoids such as quercertin; and xanthones such as mangiferin and mangiferin gallate, were identified as the main PCs in the bars. The antioxidant capacity associated with the PCs profile, together with the high DF content are indicative of the potential functional features of these natural fruit bars. The bioaccesibility of PCs in the mango bar was 53.78%. During fermentation, the PCs were bioconverted mainly to hydroxyphenolic acids and the main short-chain fatty acid produced was acetic acid. The xanthone norathyriol was identified after 12 h of fermentation. This study on the digestion and colonic fermentation of mango-based bars using in vitro models provides hints of the potential physiological behavior of PCs associated with DF, which constitutes relevant information for further development of natural and health-promoting fruit-based bars.


Assuntos
Antioxidantes/química , Fibras na Dieta , Digestão , Frutas , Mangifera , Ácidos Graxos Voláteis , Fermentação , Análise de Alimentos , Manipulação de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Mangifera/química , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA