Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 15(9): 875-883, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108421

RESUMO

T cells must be tolerant of self antigens to avoid autoimmunity but responsive to foreign antigens to provide protection against infection. We found that in both naive T cells and effector T cells, the tyrosine phosphatase PTPN22 limited signaling via the T cell antigen receptor (TCR) by weak agonists and self antigens while not impeding responses to strong agonist antigens. T cells lacking PTPN22 showed enhanced formation of conjugates with antigen-presenting cells pulsed with weak peptides, which led to activation of the T cells and their production of inflammatory cytokines. This effect was exacerbated under conditions of lymphopenia, with the formation of potent memory T cells in the absence of PTPN22. Our data address how loss-of-function PTPN22 alleles can lead to the population expansion of effector and/or memory T cells and a predisposition to human autoimmunity.


Assuntos
Autoimunidade/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 22/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Alelos , Animais , Células Apresentadoras de Antígenos/imunologia , Ativação Linfocitária/imunologia , Camundongos
2.
RNA ; 30(1): 26-36, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37879863

RESUMO

Increasing evidence suggests mammalian Argonaute (Ago) proteins partition into distinct complexes within cells, but there is still little biochemical or functional understanding of the miRNAs differentially associated with these complexes. In naïve T cells, Ago2 is found almost exclusively in low molecular weight (LMW) complexes which are associated with miRNAs but not their target mRNAs. Upon T-cell activation, a proportion of these Ago2 complexes move into a newly formed high molecular weight (HMW) RNA-induced silencing complex (RISC), which is characterized by the presence of the GW182 protein that mediates translational repression. Here, we demonstrate distinct partitioning of miRNAs and isomiRs in LMW versus HMW RISCs upon antigen-mediated activation of CD8+ T cells. We identify miR-7 as highly enriched in HMW RISC and demonstrate that miR-7 inhibition leads to increased production of IL-2 and up-regulation of the IL-2 receptor, the transferrin receptor, CD71 and the amino acid transporter, CD98. Our data support a model where recruitment of miR-7 to HMW RISC restrains IL-2 signaling and the metabolic processes regulated by IL-2.


Assuntos
MicroRNAs , Complexo de Inativação Induzido por RNA , Animais , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Peso Molecular , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/metabolismo
3.
PLoS Biol ; 17(3): e2006716, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856173

RESUMO

The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1-deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte-associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function.


Assuntos
MicroRNAs/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Citometria de Fluxo , Camundongos , Camundongos Knockout , MicroRNAs/genética , Microscopia Confocal , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Timócitos/metabolismo
4.
J Cell Sci ; 133(5)2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31471459

RESUMO

Effector T-cells rely on integrins to drive adhesion and migration to facilitate their immune function. The heterodimeric transmembrane integrin LFA-1 (αLß2 integrin) regulates adhesion and migration of effector T-cells through linkage of the extracellular matrix with the intracellular actin treadmill machinery. Here, we quantified the velocity and direction of F-actin flow in migrating T-cells alongside single-molecule localisation of transmembrane and intracellular LFA-1. Results showed that actin retrograde flow positively correlated and immobile actin negatively correlated with T-cell velocity. Plasma membrane-localised LFA-1 forms unique nano-clustering patterns in the leading edge, compared to the mid-focal zone, of migrating T-cells. Deleting the cytosolic phosphatase PTPN22, loss-of-function mutations of which have been linked to autoimmune disease, increased T-cell velocity, and leading-edge co-clustering of pY397 FAK, pY416 Src family kinases and LFA-1. These data suggest that differential nanoclustering patterns of LFA-1 in migrating T-cells may instruct intracellular signalling. Our data presents a paradigm where T-cells modulate the nanoscale organisation of adhesion and signalling molecules to fine tune their migration speed, with implications for the regulation of immune and inflammatory responses.This article has an associated First Person interview with the first author of the paper.


Assuntos
Movimento Celular , Antígeno-1 Associado à Função Linfocitária/metabolismo , Linfócitos T/citologia , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular , Membrana Celular/metabolismo , Células Cultivadas , Feminino , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação de Sentido Incorreto , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 114(30): E6117-E6126, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28696283

RESUMO

Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Transdução de Sinais , Animais , Ativação Linfocitária , Camundongos , RNA Mensageiro/metabolismo
6.
Eur J Immunol ; 48(2): 306-315, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28948613

RESUMO

A single nucleotide polymorphism within the PTPN22 gene is a strong genetic risk factor predisposing to the development of multiple autoimmune diseases. PTPN22 regulates Syk and Src family kinases downstream of immuno-receptors. Fungal ß-glucan receptor dectin-1 signals via Syk, and dectin-1 stimulation induces arthritis in mouse models. We investigated whether PTPN22 regulates dectin-1 dependent immune responses. Bone marrow derived dendritic cells (BMDCs) generated from C57BL/6 wild type (WT) and Ptpn22-/- mutant mice, were pulsed with OVA323-339 and the dectin-1 agonist curdlan and co-cultured in vitro with OT-II T-cells or adoptively transferred into OT-II mice, and T-cell responses were determined by immunoassay. Dectin-1 activated Ptpn22-/- BMDCs enhanced T-cell secretion of IL-17 in vitro and in vivo in an IL-1ß dependent manner. Immunoblotting revealed that compared to WT, dectin-1 activated Ptpn22-/- BMDCs displayed enhanced Syk and Erk phosphorylation. Dectin-1 activation of BMDCs expressing Ptpn22R619W (the mouse orthologue of human PTPN22R620W ) also resulted in increased IL-1ß secretion and T-cell dependent IL-17 responses, indicating that in the context of dectin-1 Ptpn22R619W operates as a loss-of-function variant. These findings highlight PTPN22 as a novel regulator of dectin-1 signals, providing a link between genetically conferred perturbations of innate receptor signaling and the risk of autoimmune disease.


Assuntos
Doenças Autoimunes/genética , Células Dendríticas/fisiologia , Lectinas Tipo C/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Células Th17/imunologia , Animais , Células Cultivadas , Técnicas de Cocultura , Humanos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Risco , Transdução de Sinais
7.
J Immunol ; 199(3): 874-884, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637901

RESUMO

TCR stimulation by peptide-MHC complexes on APCs requires precise reorganization of molecules into the area of cellular contact to form an immunological synapse from where T cell signaling is initiated. Caveolin (Cav)1, a widely expressed transmembrane protein, is involved in the regulation of membrane composition, cellular polarity and trafficking, and the organization of signal transduction pathways. The presence of Cav1 protein in T cells was identified only recently, and its function in this context is not well understood. We show that Cav1-knockout CD8 T cells have a reduction in membrane cholesterol and sphingomyelin, and upon TCR triggering they exhibit altered morphology and polarity, with reduced effector function compared with Cav1 wild-type CD8 T cells. In particular, redistribution of the ß2 integrin LFA-1 to the immunological synapse is compromised in Cav1-knockout T cells, as is the ability of LFA-1 to form high-avidity interactions with ICAM-1. Our results identify a role for Cav1 in membrane organization and ß2 integrin function in primary CD8 T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Caveolina 1/metabolismo , Sinapses Imunológicas/metabolismo , Ativação Linfocitária , Antígeno-1 Associado à Função Linfocitária/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/metabolismo , Caveolina 1/deficiência , Membrana Celular/química , Membrana Celular/imunologia , Membrana Celular/metabolismo , Polaridade Celular/imunologia , Colesterol/análise , Sinapses Imunológicas/química , Sinapses Imunológicas/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T/química , Transdução de Sinais , Esfingomielinas/análise
8.
Immunology ; 154(3): 377-382, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29512901

RESUMO

A number of polymorphisms in immune-regulatory genes have been identified as risk factors for the development of autoimmune disease. PTPN22 (that encodes a tyrosine phosphatase) has been associated with the development of several autoimmune diseases, including type 1 diabetes, rheumatoid arthritis and systemic lupus erythematosus. PTPN22 regulates the activity and effector functions of multiple important immune cell types, including lymphocytes, granulocytes and myeloid cells. In this review, we describe the role of PTPN22 in regulating T-cell activation and effector responses. We discuss progress in our understanding of the impact of PTPN22 in autoimmune disease in humans and mouse models, as well as recent evidence suggesting that genetic manipulation of PTPN22 expression might enhance the efficacy of anti-tumour T-cell responses.


Assuntos
Autoimunidade/genética , Imunomodulação , Neoplasias/etiologia , Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único
9.
J Autoimmun ; 94: 45-55, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30054208

RESUMO

A missense C1858T single nucleotide polymorphism within PTPN22 is a strong genetic risk factor for the development of multiple autoimmune diseases. PTPN22 encodes a protein tyrosine phosphatase that negatively regulates immuno-receptor proximal Src and Syk family kinases. Notably, PTPN22 negatively regulates kinases downstream of T-cell receptor (TCR) and LFA-1, thereby setting thresholds for T-cell activation. Alterations to the quality of TCR and LFA-1 engagement at the immune synapse and the regulation of downstream signals can have profound effects on the type of effector T-cell response induced. Here we describe how IFNγ+ Th1 responses are potentiated in Ptpn22-/- T-cells and in T-cells from mice expressing Ptpn22R619W (the mouse orthologue of the human genetic variant) as they age, or following repeated immune challenge, and explore the mechanisms contributing to the expansion of Th1 cells. Specifically, we uncover two LFA-1-ICAM dependent mechanisms; one T-cell intrinsic, and one T-cell extrinsic. Firstly, we found that in vitro anti-CD3/LFA-1 induced Th1 responses were enhanced in Ptpn22-/- T-cells compared to WT, whereas anti-CD3/anti-CD28 induced IFNy responses were similar. These data were associated with an enhanced ability of Ptpn22-/- T-cells to engage ICAM-1 at the immune synapse when incubated on planar lipid bilayers, and to form conjugates with dendritic cells. Secondly, we observed a T-cell extrinsic mechanism whereby repeated stimulation of WT OT-II T-cells with LPS and OVA323-339 pulsed Ptpn22-/- bone marrow derived dendritic cells (BMDCs) was sufficient to enhance Th1 cell development compared to WT BMDCs. Furthermore, this response could be reversed by LFA-1 blockade. Our data point to two related but distinct mechanisms by which PTPN22 regulates LFA-1 dependent signals to enhance Th1 development, highlighting how perturbations to PTPN22 function over time to regulate the balance of the immune response.


Assuntos
Artrite Experimental/imunologia , Células Dendríticas/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 22/imunologia , Células Th1/imunologia , Animais , Anticorpos/farmacologia , Artrite Experimental/genética , Artrite Experimental/patologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Antígenos CD28/antagonistas & inibidores , Antígenos CD28/genética , Antígenos CD28/imunologia , Complexo CD3/antagonistas & inibidores , Complexo CD3/genética , Complexo CD3/imunologia , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Regulação da Expressão Gênica , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/imunologia , Lipopolissacarídeos/farmacologia , Antígeno-1 Associado à Função Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/farmacologia , Fragmentos de Peptídeos/farmacologia , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 22/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Células Th1/efeitos dos fármacos , Células Th1/patologia
11.
J Immunol ; 197(12): 4771-4779, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807193

RESUMO

Neutrophils act as a first line of defense against bacterial and fungal infections, but they are also important effectors of acute and chronic inflammation. Genome-wide association studies have established that the gene encoding the protein tyrosine phosphatase nonreceptor 22 (PTPN22) makes an important contribution to susceptibility to autoimmune disease, notably rheumatoid arthritis. Although PTPN22 is most highly expressed in neutrophils, its function in these cells remains poorly characterized. We show in this article that neutrophil effector functions, including adhesion, production of reactive oxygen species, and degranulation induced by immobilized immune complexes, were reduced in Ptpn22-/- neutrophils. Tyrosine phosphorylation of Lyn and Syk was altered in Ptpn22-/- neutrophils. On stimulation with immobilized immune complexes, Ptpn22-/- neutrophils manifested reduced activation of key signaling intermediates. Ptpn22-/- mice were protected from immune complex-mediated arthritis, induced by the transfer of arthritogenic serum. In contrast, in vivo neutrophil recruitment following thioglycollate-induced peritonitis and in vitro chemotaxis were not affected by lack of PTPN22. Our data suggest an important role for PTPN22-dependent dephosphorylation events, which are required to enable full FcγR-induced activation, pointing to an important role for this molecule in neutrophil function.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/genética , Neutrófilos/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Animais , Complexo Antígeno-Anticorpo , Artrite Experimental/genética , Adesão Celular , Degranulação Celular , Predisposição Genética para Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação de Neutrófilo , Fosforilação , Polimorfismo Genético , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de IgG/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Quinases da Família src/metabolismo
12.
J Immunol ; 197(2): 429-40, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288531

RESUMO

The cytoplasmic phosphatase, protein tyrosine phosphatase nonreceptor type 22 (PTPN22), is a negative regulator of T cell signaling. Genome-wide association studies have shown that single-nucleotide polymorphisms in PTPN22 confer an increased risk of developing multiple autoimmune diseases in humans. The precise function of PTPN22 and how the variant protein contributes to autoimmunity is not well understood. To address this issue, we investigated the effect of PTPN22 deficiency on disease susceptibility in a mouse model of autoimmune arthritis. The SKG mouse expresses a hypomorphic mutant allele of ZAP70, which, upon exposure to fungal Ags, predisposes the mice to a CD4(+) T cell-mediated autoimmune arthritis that closely resembles rheumatoid arthritis in humans. Surprisingly, SKG Ptpn22(-/-) mice developed less severe mannan-induced arthritis compared with SKG mice. Diminution of disease was not due to significant alterations in thymocyte development or repertoire selection in SKG Ptpn22(-/-) mice, even though T cell-mediated signal transduction was improved. Instead, Ptpn22 deficiency appeared to bias CD4 Th cell differentiation away from the Th17 lineage, which is pathogenic in this setting, to a more Th1/T regulatory-focused response. These data show that even small perturbations in TCR signal transduction pathways can have profound consequences on the differentiation of T cell lineages and thus for the development of autoimmune diseases.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 22/imunologia , Animais , Western Blotting , Diferenciação Celular/imunologia , Citometria de Fluxo , Mananas/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Mutantes , Reação em Cadeia da Polimerase , Proteína Tirosina Fosfatase não Receptora Tipo 22/deficiência , Receptores de Antígenos de Linfócitos T/imunologia , Células Th17/imunologia
13.
J Immunol ; 197(6): 2434-43, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521342

RESUMO

CD8 T cells must integrate antigenic and inflammatory signals to differentiate into efficient effector and memory T cells able to protect us from infections. The mechanisms by which TCR signaling and proinflammatory cytokine receptor signaling cooperate in these processes are poorly defined. In this study, we show that IL-12 and other proinflammatory cytokines transduce signals through the TCR signalosome in a manner that requires Fyn activity and self-peptide-MHC (self-pMHC) interactions. This mechanism is crucial for CD8 innate T cell functions. Loss of Fyn activity or blockade of self-pMHC interactions severely impaired CD8 T cell IFN-γ and NKG2D expression, proliferation, and cytotoxicity upon cytokine-mediated bystander activation. Most importantly, in the absence of self-pMHC interactions, CD8 memory T cells fail to undergo bystander activation upon an unrelated infection. Thus, CD8 T cell bystander activation, although independent of cognate Ag, still requires self-pMHC and TCR signaling.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata , Interleucina-12/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Citocinas/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica , Interferon gama/genética , Interferon gama/imunologia , Interleucina-12/imunologia , Ativação Linfocitária , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
14.
J Immunol ; 195(10): 4615-22, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453749

RESUMO

Ag-dependent activation of naive T cells induces dramatic changes in cellular metabolism that are essential for cell growth, division, and differentiation. In recent years, the serine/threonine kinase mechanistic target of rapamycin (mTOR) has emerged as a key integrator of signaling pathways that regulate these metabolic processes. However, the role of specific downstream effectors of mTOR function in T cells is poorly understood. Ribosomal protein S6 (rpS6) is an essential component of the ribosome and is inducibly phosphorylated following mTOR activation in eukaryotic cells. In the current work, we addressed the role of phosphorylation of rpS6 as an effector of mTOR function in T cell development, growth, proliferation, and differentiation using knockin and TCR transgenic mice. Surprisingly, we demonstrate that rpS6 phosphorylation is not required for any of these processes either in vitro or in vivo. Indeed, rpS6 knockin mice are completely sensitive to the inhibitory effects of rapamycin and an S6 kinase 1 (S6K1)-specific inhibitor on T cell activation and proliferation. These results place the mTOR complex 1-S6K1 axis as a crucial determinant of T cell activation independently of its ability to regulate rpS6 phosphorylation.


Assuntos
Ativação Linfocitária/imunologia , Complexos Multiproteicos/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteína S6 Ribossômica/metabolismo , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Ciclo Celular/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Transdução de Sinais/imunologia , Sirolimo/farmacologia , Linfócitos T/citologia
15.
J Immunol ; 190(7): 3089-99, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23427257

RESUMO

In CD8(+) T cells, engagement of the TCR with agonist peptide:MHC molecules causes dynamic redistribution of surface molecules including the CD8 coreceptor to the immunological synapse. CD8 associates with the Src-family kinase (SFK) Lck, which, in turn, initiates the rapid tyrosine phosphorylation events that drive cellular activation. Compared with naive T cells, Ag-experienced CD8(+) T cells make shorter contacts with APC, are less dependent on costimulation, and are triggered by lower concentrations of Ag, yet the molecular basis of this more efficient response of memory T cells is not fully understood. In this article, we show differences between naive and Ag-experienced CD8(+) T cells in colocalization of the SFKs and their negative regulator, C-terminal Src kinase (Csk). In naive CD8(+) T cells, there was pronounced colocalization of SFKs and Csk at the site of TCR triggering, whereas in Ag-experienced cells, Csk displayed a bipolar distribution with a proportion of the molecules sequestered within a cytosolic area in the distal pole of the cell. The data show that there is differential redistribution of a key negative regulator away from the site of TCR engagement in Ag-experienced CD8(+) T cells, which might be associated with the more efficient responses of these cells on re-exposure to Ag.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/enzimologia , Linfócitos T CD8-Positivos/imunologia , Quinases da Família src/metabolismo , Animais , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Proteína Tirosina Quinase CSK , Células Cultivadas , Ativação Enzimática , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Camundongos Knockout , Transporte Proteico , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Quinases da Família src/química
16.
Methods Mol Biol ; 2743: 81-92, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147209

RESUMO

Phosphotyrosine phosphatase non-receptor type 22 (PTPN22) is a key regulator of immune cell activation and responses. Genetic polymorphisms of PTPN22 have been strongly linked with an increased risk of developing autoimmune diseases, while analysis of PTPN22-deficient mouse strains has determined that PTPN22 serves as a negative regulator of T cell antigen receptor signaling. As well as these key roles in maintaining immune tolerance, PTPN22 acts as an intracellular checkpoint for T cell responses to cancer, suggesting that PTPN22 might be a useful target to improve T cell immunotherapies. To assess the potential for targeting PTPN22, we have crossed Ptpn22-deficient mice to an OT-I TCR transgenic background and used adoptive T cell transfer approaches in mouse cancer models. We provide basic methods for the in vitro expansion of effector OT-I cytotoxic T lymphocytes, in vitro phenotypic analysis, and in vivo adoptive T cell transfer models to assess the role of PTPN22 in anti-cancer immunity.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Animais , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Neoplasias/genética , Neoplasias/terapia , Transdução de Sinais , Modelos Animais de Doenças , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética
17.
Blood ; 117(1): 108-17, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20876849

RESUMO

T-cell development is critically dependent on the activities of the Src-family kinases p56(lck) and p59(fyn). While Lck plays a dominant role in the initiation of T-cell receptor (TCR) signaling and in thymocyte differentiation, Fyn plays a more subtle regulatory role. We sought to determine the role of intracellular localization in the differing functions of Lck and Fyn in T cells. By generating transgenic mice that express chimeric Lck-Fyn proteins, we showed that the N-terminal unique domain determines the intracellular localization and function of Lck in pre-TCR and mature αßTCR signaling in vivo. Furthermore, coexpression of a "domain-swap" Lck protein containing the Fyn unique domain with an inducible Lck transgene resulted in the development of thymomas. In contrast to previous reports of Lck-driven thymomas, tumor development was dependent on either pre-TCR or mature TCR signals, and was completely ablated when mice were crossed to a recombination activating gene 1 (Rag1)-deficient background. These data provide a mechanistic basis for the differing roles of Lck and Fyn in T-cell development, and show that intracellular localization as determined by the N-terminal unique domains is critical for Src-family kinase function in vivo.


Assuntos
Diferenciação Celular , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/fisiologia , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Timoma/patologia , Timo/citologia , Animais , Western Blotting , Antígenos CD2/genética , Feminino , Citometria de Fluxo , Humanos , Imunoprecipitação , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Linfócitos T/metabolismo , Timoma/metabolismo , Timo/metabolismo
18.
Crit Rev Immunol ; 32(2): 97-126, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23216610

RESUMO

Harnessing T-cell responses to constrain tumor growth is a realistic treatment aspiration in tumor medicine, as many tumors express specific tumor associated antigens that are recognized by the adaptive immune system. CD8 T cells have direct cytolytic activity against tumor cells, and CD4 T cells mount a variety of responses that have important influences on tumor growth. We discuss how individual T-cell subsets contribute to antitumor responses and the goals and problems associated with generating and/or maintaining effective multifunctional T-cell responses to provide long-term protection against tumors.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/imunologia , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/transplante , Citotoxicidade Imunológica , Humanos , Memória Imunológica , Neoplasias/terapia
19.
Immunol Rev ; 228(1): 9-22, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19290918

RESUMO

T-cell development in the thymus and activation of mature T cells in secondary lymphoid organs requires the ability of cells to respond appropriately to environmental signals at multiple stages of their development. The process of thymocyte selection insures a functional T-cell repertoire, while activation of naive peripheral T cells induces proliferation, gain of effector function, and, ultimately, long-lived T-cell memory. The T-cell immune response is initiated upon engagement of the T-cell receptor (TCR) and coreceptor, CD4 or CD8, by cognate antigen/major histocompatibility complexes presented by antigen-presenting cells. TCR/coreceptor engagement induces the activation of biochemical signaling pathways that, in combination with signals from costimulator molecules and cytokine receptors, direct the outcome of the response. Activation of the src-family kinases p56(lck) (Lck) and p59(fyn) (Fyn) is central to the initiation of TCR signaling pathways. This review focuses on our current understanding of the mechanisms by which these two proteins orchestrate T-cell function.


Assuntos
Tolerância Imunológica , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Diferenciação Celular , Humanos , Ativação Linfocitária
20.
J Immunother Cancer ; 11(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056892

RESUMO

BACKGROUND: Adoptive cell therapy (ACT) is a promising strategy for treating cancer, yet it faces several challenges such as lack of long-term protection due to T cell exhaustion induced by chronic TCR stimulation in the tumor microenvironment. One benefit of ACT, however, is that it allows for cellular manipulations, such as deletion of the phosphotyrosine phosphatase non-receptor type 22 (PTPN22), which improves CD8+ T cell antitumor efficacy in ACT. We tested whether Ptpn22KO cytolytic T cells (CTLs) were also more effective than Ptpn22WT CTL in controlling tumors in scenarios that favor T cell exhaustion. METHODS: Tumor control by Ptpn22WT and Ptpn22KO CTL was assessed following adoptive transfer of low numbers of CTL to mice with subcutaneously implanted MC38 tumors. Tumor infiltrating lymphocytes were isolated for analysis of effector functions. An in vitro assay was established to compare CTL function in response to acute and chronic restimulation with antigen-pulsed tumor cells. The expression of effector and exhaustion-associated proteins by Ptpn22WT and Ptpn22KO T cells was followed over time in vitro and in vivo using the ID8 tumor model. Finally, the effect of PD-1 and TIM-3 blockade on Ptpn22KO CTL tumor control was assessed using monoclonal antibodies and CRISPR/Cas9-mediated knockout. RESULTS: Despite having improved effector function at the time of transfer, Ptpn22KO CTL became more exhausted than Ptpn22WT CTL, characterized by more rapid loss of effector functions, and earlier and higher expression of inhibitory receptors (IRs), particularly the terminal exhaustion marker TIM-3. TIM-3 expression, under the control of the transcription factor NFIL3, was induced by IL-2 signaling which was enhanced in Ptpn22KO cells. Antitumor responses of Ptpn22KO CTL were improved following PD-1 blockade in vivo, yet knockout or antibody-mediated blockade of TIM-3 did not improve but further impaired tumor control, indicating TIM-3 signaling itself did not drive the diminished function seen in Ptpn22KO CTL. CONCLUSIONS: This study questions whether TIM-3 plays a role as an IR and highlights that genetic manipulation of T cells for ACT needs to balance short-term augmented effector function against the risk of T cell exhaustion in order to achieve longer-term protection.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Neoplasias , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Exaustão das Células T , Proteínas Tirosina Fosfatases , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA