Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Haematol ; 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815995

RESUMO

Thrombocytopenia 4 (THC4) is an autosomal-dominant thrombocytopenia caused by mutations in CYCS, the gene encoding cytochrome c (CYCS), a small haeme protein essential for electron transport in mitochondria and cell apoptosis. THC4 is considered an extremely rare condition since only a few patients have been reported so far. These subjects presented mild thrombocytopenia and no or mild bleeding tendency. In this study, we describe six Italian families with five different heterozygous missense CYCS variants: p.Gly42Ser and p.Tyr49His previously associated with THC4, and three novel variants (p.Ala52Thr, p.Arg92Gly, and p.Leu99Val), which have been classified as pathogenic by bioinformatics and segregation analyses. Moreover, we supported functional effects of p.Ala52Thr and p.Arg92Gly on oxidative growth and respiratory activity in a yeast model. The clinical characterization of the 22 affected individuals, the largest series of THC4 patients ever reported, showed that this disorder is characterized by mild-to-moderate thrombocytopenia, normal platelet size, and function, low risk of bleeding, and no additional clinical phenotypes associated with reduced platelet count. Finally, we describe a significant correlation between the region of CYCS affected by mutations and the extent of thrombocytopenia, which could reflect different degrees of impairment of CYCS functions caused by different pathogenetic variants.

2.
Am J Med Genet A ; : e63713, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924631

RESUMO

Haploinsufficiency of FOXP1 gene is responsible for a neurodevelopmental disorder presenting with intellectual disability (ID), autism spectrum disorder (ASD), hypotonia, mild dysmorphic features, and multiple congenital anomalies. Joint contractures are not listed as a major feature of FOXP1-related disorder. We report five unrelated individuals, each harboring likely gene disruptive de novo FOXP1 variants or whole gene microdeletion, who showed multiple joint contractures affecting at least two proximal and/or distal joints. Consistent with the phenotype of FOXP1-related disorder, all five patients showed developmental delay with moderate-to-severe speech delay, ID, ASD, and facial dysmorphic features. FOXP1 is implicated in neuronal differentiation and in organizing motor axon projections, thus providing a potential developmental basis for the joint contractures. The combination of joint contractures and neurodevelopmental disorders supports the clinical suspicion of FOXP1-related phenotype.

3.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073924

RESUMO

Gaucher disease (GD) is an autosomal recessive lysosomal disorder due to beta-glucosidase gene (GBA) mutations. The molecular diagnosis of GD is complicated by the presence of recombinant alleles originating from a highly homologous pseudogene. Clinical exome sequencing (CES) is a rapid genetic approach for identifying disease-causing mutations. However, copy number variation and recombination events are poorly detected, and further investigations are required to avoid mis-genotyping. The aim of this work was to set-up an integrated strategy for GD patients genotyping using CES as a first-line test. Eight patients diagnosed with GD were analyzed by CES. Five patients were fully genotyped, while three were revealed to be homozygous for mutations that were not confirmed in the parents. Therefore, MLPA (multiplex ligation-dependent probe amplification) and specific long-range PCR were performed, and two recombinant alleles, one of them novel, and one large deletion were identified. Furthermore, an MLPA assay performed in one family resulted in the identification of an additional novel mutation (p.M124V) in a relative, in trans with the known p.N409S mutation. In conclusion, even though CES has become extensively used in clinical practice, our study emphasizes the importance of a comprehensive molecular strategy to provide proper GBA genotyping and genetic counseling.


Assuntos
Exoma/genética , Doença de Gaucher/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , beta-Glucosidase/genética , Alelos , Variações do Número de Cópias de DNA , Família , Feminino , Doença de Gaucher/genética , Genótipo , Células HEK293 , Homozigoto , Humanos , Masculino , Mutação , Linhagem
4.
J Inherit Metab Dis ; 43(3): 574-585, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31707734

RESUMO

Niemann-Pick disease type C (NPC) and Tangier disease are genetically and clinically distinct rare inborn errors of metabolism. NPC is caused by defects in either NPC1 or NPC2; whereas Tangier disease is caused by a defect in ABCA1. Tangier disease is currently without therapy, whereas NPC can be treated with miglustat, a small molecule inhibitor of glycosphingolipid biosynthesis that slows the neurological course of the disease. When a Tangier disease patient was misdiagnosed with NPC and treated with miglustat, her symptoms improved. This prompted us to consider whether there is mechanistic convergence between these two apparently unrelated rare inherited metabolic diseases. In this study, we found that when ABCA1 is defective (Tangier disease) there is secondary inhibition of the NPC disease pathway, linking these two diseases at the level of cellular pathophysiology. In addition, this study further supports the hypothesis that miglustat, as well as other substrate reduction therapies, may be potential therapeutic agents for treating Tangier disease as fibroblasts from multiple Tangier patients were corrected by miglustat treatment.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Transportador 1 de Cassete de Ligação de ATP/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , 1-Desoxinojirimicina/uso terapêutico , Adulto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pessoa de Meia-Idade , Proteína C1 de Niemann-Pick , Resultado do Tratamento
5.
Hum Mol Genet ; 26(12): 2277-2289, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28379564

RESUMO

The Niemann-Pick type C1 (NPC1) disease is a neurodegenerative lysosomal storage disorder due to mutations in the NPC1 gene, encoding a transmembrane protein related to the Sonic hedgehog (Shh) receptor, Patched, and involved in intracellular trafficking of cholesterol. We have recently found that the proliferation of cerebellar granule neuron precursors is significantly reduced in Npc1-/- mice due to the downregulation of Shh expression. This finding prompted us to analyze the formation of the primary cilium, a non-motile organelle that is specialized for Shh signal transduction and responsible, when defective, for several human genetic disorders. In this study, we show that the expression and subcellular localization of Shh effectors and ciliary proteins are severely disturbed in Npc1-deficient mice. The dysregulation of Shh signaling is associated with a shortening of the primary cilium length and with a reduction of the fraction of ciliated cells in Npc1-deficient mouse brains and the human fibroblasts of NPC1 patients. These defects are prevented by treatment with 2-hydroxypropyl-ß-cyclodextrin, a promising therapy currently under clinical investigation. Our findings indicate that defective Shh signaling is responsible for abnormal morphogenesis of the cerebellum of Npc1-deficient mice and show, for the first time, that the formation of the primary cilium is altered in NPC1 disease.


Assuntos
Cílios/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Proteínas de Transporte/genética , Cerebelo/metabolismo , Colesterol/metabolismo , Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Neurônios/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Proteínas/genética , Transdução de Sinais , beta-Ciclodextrinas/metabolismo
6.
Mov Disord ; 32(10): 1423-1431, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28843015

RESUMO

BACKGROUND: Reduced ß-glucocerebrosidase activity was observed in postmortem brains of both GBA1 mutation carrier and noncarrier Parkinson's disease patients, suggesting that lower ß-glucocerebrosidase activity is a key feature in the pathogenesis of PD. The objectives of this study were to confirm whether there is reduced ß-glucocerebrosidase activity in the CSF of GBA1 mutation carrier and noncarrier PD patients and verify if other lysosomal enzymes show altered activity in the CSF. METHODS: CSF ß-glucocerebrosidase, cathepsin D, and ß-hexosaminidase activities were measured in 79 PD and 61 healthy controls from the BioFIND cohort. The whole GBA1 gene was sequenced. RESULTS: Enzyme activities were normalized according to CSF protein content (specific activity). ß-glucocerebrosidase specific activity was significantly decreased in PD versus controls (-28%, P < 0.001). GBA1 mutations were found in 10 of 79 PD patients (12.7%) and 3 of 61 controls (4.9%). GBA1 mutation carrier PD patients showed significantly lower ß-glucocerebrosidase specific activity versus noncarriers. ß-glucocerebrosidase specific activity was also decreased in noncarrier PD patients versus controls (-25%, P < 0.001). Cathepsin D specific activity was lower in PD versus controls (-21%, P < 0.001). ß-Hexosaminidase showed a similar trend. ß-Glucocerebrosidase specific activity fairly discriminated PD from controls (area under the curve, 0.72; sensitivity, 0.67; specificity, 0.77). A combination of ß-glucocerebrosidase, cathepsin D, and ß-hexosaminidase improved diagnostic accuracy (area under the curve, 0.77; sensitivity, 0.71; specificity, 0.85). Lower ß-glucocerebrosidase and ß-hexosaminidase specific activities were associated with worse cognitive performance. CONCLUSIONS: CSF ß-glucocerebrosidase activity is reduced in PD patients independent of their GBA1 mutation carrier status. Cathepsin D and ß-hexosaminidase were also decreased. The possible link between altered CSF lysosomal enzyme activities and cognitive decline deserves further investigation. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Glucosilceramidase/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , Idoso , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Catepsina D/líquido cefalorraquidiano , Feminino , Glucosilceramidase/genética , Humanos , Lisossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Doença de Parkinson/genética , Fragmentos de Peptídeos/líquido cefalorraquidiano , Curva ROC , Estatística como Assunto , alfa-Sinucleína/líquido cefalorraquidiano , beta-N-Acetil-Hexosaminidases/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
7.
Hum Mutat ; 37(2): 139-47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26499107

RESUMO

Niemann-Pick Types A and B (NPA/B) diseases are autosomal recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase (ASM) because of the mutations in the SMPD1 gene. Here, we provide a comprehensive updated review of already reported and newly identified SMPD1 variants. Among them, 185 have been found in NPA/B patients. Disease-causing variants are equally distributed along the SMPD1 gene; most of them are missense (65.4%) or frameshift (19%) mutations. The most frequently reported mutation worldwide is the p.R610del, clearly associated with an attenuated NP disease type B phenotype. The available information about the impact of 52 SMPD1 variants on ASM mRNA and/or enzymatic activity has been collected and whenever possible, phenotype/genotype correlations were established. In addition, we created a locus-specific database easily accessible at http://www.inpdr.org/genes that catalogs the 417 SMPD1 variants reported to date and provides data on their in silico predicted effects on ASM protein function or mRNA splicing. The information reviewed in this article, providing new insights into the genotype/phenotype correlation, is extremely valuable to facilitate diagnosis and genetic counseling of families affected by NPA/B.


Assuntos
Bases de Dados Genéticas , Mutação , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo B/genética , RNA Mensageiro/genética , Esfingomielina Fosfodiesterase/genética , Éxons , Expressão Gênica , Genes Recessivos , Estudos de Associação Genética , Genótipo , Humanos , Íntrons , Doença de Niemann-Pick Tipo A/diagnóstico , Doença de Niemann-Pick Tipo A/patologia , Doença de Niemann-Pick Tipo B/diagnóstico , Doença de Niemann-Pick Tipo B/patologia , Fases de Leitura Aberta , Fenótipo , Splicing de RNA
8.
FASEB J ; 29(9): 3839-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26018676

RESUMO

Acid ß-glucosidase (GCase), the enzyme deficient in Gaucher disease (GD), is transported to lysosomes by the lysosomal integral membrane protein (LIMP)-2. In humans, LIMP-2 deficiency leads to action myoclonus-renal failure (AMRF) syndrome. GD and AMRF syndrome share some clinical features. However, they are different from clinical and biochemical points of view, suggesting that the role of LIMP-2 in the targeting of GCase would be different in different tissues. Besides, the role of LIMP-2 in the uptake and trafficking of the human recombinant (hr)GCase used in the treatment of GD is unknown. Thus, we compared GCase activity and intracellular localization in immortalized lymphocytes, fibroblasts, and a neuronal model derived from multipotent adult stem cells, from a patient with AMRF syndrome, patients with GD, and control subjects. In fibroblasts and neuronlike cells, GCase targeting to the lysosomes is completely dependent on LIMP-2, whereas in blood cells, GCase is partially targeted to lysosomes by a LIMP-2-independent mechanism. Although hrGCase cellular uptake is independent of LIMP-2, its trafficking to the lysosomes is mediated by this receptor. These data provide new insights into the mechanisms involved in the intracellular trafficking of GCase and in the pathogeneses of GD and AMRF syndrome.


Assuntos
Células-Tronco Adultas/metabolismo , Fibroblastos/metabolismo , Glucosilceramidase , Linfócitos/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Células-Tronco Multipotentes/metabolismo , Receptores Depuradores/metabolismo , Adulto , Células-Tronco Adultas/patologia , Fibroblastos/patologia , Glucosilceramidase/farmacocinética , Glucosilceramidase/farmacologia , Humanos , Linfócitos/patologia , Proteínas de Membrana Lisossomal/genética , Lisossomos/metabolismo , Lisossomos/patologia , Células-Tronco Multipotentes/patologia , Epilepsias Mioclônicas Progressivas/tratamento farmacológico , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Receptores Depuradores/genética , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia
9.
Nucleic Acids Res ; 42(2): 1291-302, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24150945

RESUMO

Glycogen storage disease type II is a lysosomal storage disorder due to mutations of the GAA gene, which causes lysosomal alpha-glucosidase deficiency. Clinically, glycogen storage disease type II has been classified in infantile and late-onset forms. Most late-onset patients share the leaky splicing mutation c.-32-13T>G. To date, the mechanism by which the c.-32-13T>G mutation affects the GAA mRNA splicing is not fully known. In this study, we demonstrate that the c.-32-13T>G mutation abrogates the binding of the splicing factor U2AF65 to the polypyrimidine tract of exon 2 and that several splicing factors affect exon 2 inclusion, although the only factor capable of acting in the c.-32-13 T>G context is the SR protein family member, SRSF4 (SRp75). Most importantly, a preliminary screening using small molecules described to be able to affect splicing profiles, showed that resveratrol treatment resulted in a significant increase of normal spliced GAA mRNA, GAA protein content and activity in cells transfected with a mutant minigene and in fibroblasts from patients carrying the c-32-13T>G mutation. In conclusion, this work provides an in-depth functional characterization of the c.-32-13T>G mutation and, most importantly, an in vitro proof of principle for the use of small molecules to rescue normal splicing of c.-32-13T>G mutant alleles.


Assuntos
Doença de Depósito de Glicogênio Tipo II/genética , Mutação , Splicing de RNA , alfa-Glucosidases/genética , Células Cultivadas , Éxons , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Fator de Processamento U2AF , alfa-Glucosidases/metabolismo
11.
Biomedicines ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397906

RESUMO

Bruxism is a worldwide oral health problem. Although there is a consensus about its multifactorial nature, its precise etiopathogenetic mechanisms are unclear. This study, taking advantage of a deeply characterized cohort of 769 individuals (aged 6-89 years) coming from Northern Italy's genetically isolated populations, aims to epidemiologically describe environmental risk factors for bruxism development and identify genes potentially involved through a Genome-Wide Association Study (GWAS) approach. Logistic mixed models adjusted for age and sex were performed to evaluate associations between bruxism and possible risk factors, e.g., anxiety, smoking, and alcohol and caffeine intake. A case-control GWAS (135 cases, 523 controls), adjusted for age, sex, and anxiety, was conducted to identify new candidate genes. The GTEx data analysis was performed to evaluate the identified gene expression in human body tissues. Statistical analyses determined anxiety as a bruxism risk factor (OR = 2.54; 95% CI: 1.20-5.38; p-value = 0.015), and GWAS highlighted three novel genes potentially associated with bruxism: NLGN1 (topSNP = rs2046718; p-value = 2.63 × 10-7), RIMBP2 (topSNP = rs571497947; p-value = 4.68 × 10-7), and LHFP (topSNP = rs2324342; p-value = 7.47 × 10-6). The GTEx data analysis showed their expression in brain tissues. Overall, this work provided a deeper understanding of bruxism etiopathogenesis with the long-term perspective of developing personalized therapeutic approaches for improving affected individuals' quality of life.

12.
Mol Genet Metab ; 102(2): 226-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21036086

RESUMO

Gaucher disease is the most frequent lysosomal storage disorder due to the autosomal recessive deficiency of acid ß-glucosidase. More than 300 mutations in the GBA1 gene have been described. However only one large deletion of the GBA1 gene has been reported to date. Here, using a combination of different experimental approaches including PCR, sequencing and Southern blot analysis, we describe the identification and characterization of a new large deletion of the GBA1 gene due to an inter Alu recombination event.


Assuntos
Elementos Alu/genética , Doença de Gaucher/genética , Recombinação Genética , Deleção de Sequência , beta-Glucosidase/genética , Região 5'-Flanqueadora/genética , Adulto , Sequência de Bases , Cromossomos Humanos Par 1 , Ordem dos Genes , Humanos , Masculino
13.
J Clin Med ; 10(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34682919

RESUMO

(1) Background: Niemann-Pick type C disease (NPCD) is an autosomal recessive lysosomal storage disorder caused by mutations in the NPC1 or NPC2 genes. The clinical presentation is characterized by visceral and neurological involvement. Apart from a small group of patients presenting a severe perinatal form, all patients develop progressive and fatal neurological disease with an extremely variable age of onset. Different biomarkers have been identified; however, they poorly correlate with neurological disease. In this study we assessed the possible role of plasma NfL as a neurological disease-associated biomarker in NPCD. (2) Methods: Plasma NfL levels were measured in 75 healthy controls and 26 patients affected by NPCD (24 NPC1 and 2 NPC2; 39 samples). (3) Results: Plasma NfL levels in healthy controls correlated with age and were significantly lower in pediatric patients as compared to adult subjects (p = 0.0017). In both pediatric and adult NPCD patients, the plasma levels of NfL were significantly higher than in age-matched controls (p < 0.0001). Most importantly, plasma NfL levels in NPCD patients with neurological involvement were significantly higher than the levels found in patients free of neurological signs at the time of sampling, both in the pediatric and the adult group (p = 0.0076; p = 0.0032, respectively). Furthermore, in adults the NfL levels in non-neurological patients were comparable with those found in age-matched controls. No correlations between plasma NfL levels and NPCD patient age at sampling or plasma levels of cholestan 3ß-5α-6ß-triol were found. (4) Conclusions: These data suggest a promising role of plasma NfL as a possible neurological disease-associated biomarker in NPCD.

14.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119015, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741433

RESUMO

An essential requirement for cells to sustain a high proliferating rate is to be paired with enhanced protein synthesis through the production of ribosomes. For this reason, part of the growth-factor signaling pathways, are devoted to activate ribosome biogenesis. Enhanced production of ribosomes is a hallmark in cancer cells, which is boosted by different mechanisms. Here we report that the nucleolar tumor-protein MageB2, whose expression is associated with cell proliferation, also participates in ribosome biogenesis. Studies carried out in both siRNA-mediated MageB2 silenced cells and CRISPR/CAS9-mediated MageB2 knockout (KO) cells showed that its expression is linked to rRNA transcription increase independently of the cell proliferation status. Mechanistically, MageB2 interacts with phospho-UBF, a protein which causes the recruitment of RNA Pol I pre-initiation complex required for rRNA transcription. In addition, cells expressing MageB2 displays enhanced phospho-UBF occupancy at the rDNA gene promoter. Proteomic studies performed in MageB2 KO cells revealed impairment in ribosomal protein (RPs) content. Functionally, enhancement in rRNA production in MageB2 expressing cells, was directly associated with an increased dynamic in protein synthesis. Altogether our results unveil a novel function for a tumor-expressed protein from the MAGE-I family. Findings reported here suggest that nucleolar MageB2 might play a role in enhancing ribosome biogenesis as part of its repertoire to support cancer cell proliferation.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Ribossomos/metabolismo , Antígenos de Neoplasias/fisiologia , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Proliferação de Células/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Células HCT116 , Células HEK293 , Humanos , Proteínas de Neoplasias/fisiologia , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Ribossomos/genética , Transcrição Gênica/genética
15.
JIMD Rep ; 55(1): 15-21, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32905047

RESUMO

Alpha mannosidosis is an ultrarare pathology with variable phenotypic manifestations, characterized by the deficiency of lysosomal alpha mannosidase which causes accumulation of neutral oligosaccharides. Until recently, the hematopoietic stem cell transplantation was the only clinical feasible therapeutic option. Only in 2018, the European Medicines Agency's committee approved the recombinant enzyme velmanase alfa for long-term treatment of non-neurological manifestations in mild and moderate forms of alpha-mannosidosis. In this study, the very early biochemical effects of enzyme replacement therapy in in a 7-month-old patient with alpha-mannosidosis were described. Velmanase alpha was administered as supporting therapy awaiting for hematopoietic stem cell transplantation, the treatment chosen for the patient because of the early onset form. The results showed that the enzyme replacement therapy was able to reduce the content of three different mannosyl-oligosaccharides monitored by tandem mass spectrometry after 2 months of treatment. In particular, the mean relative changes from baseline values were -67% in urine and -53% in serum at the latest observation. The study also showed that the enzymatic activity detected in serum 1 week after the first infusion was four times higher than the normal values and constant in the following points of observation. These findings led us to assume that velmanase alfa might be biologically active in this young patient.

16.
Dis Markers ; 2020: 8869424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343767

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has rapidly spread worldwide from the beginning of 2020. The presence of viral RNA in samples by nucleic acid (NA) molecular analysis is the only method available to diagnose COVID-19 disease and to assess patients' viral load. Since the demand for laboratory reagents has increased, there has been a worldwide shortage of RNA extraction kits. We, therefore, developed a fast and cost-effective viral genome isolation method that, combined with quantitative RT-PCR assay, detects SARS-CoV-2 RNA in patient samples. The method relies on the addition of Proteinase K followed by a controlled heat-shock incubation and, then, E gene evaluation by RT-qPCR. It was validated for sensitivity, specificity, linearity, reproducibility, and precision. It detects as low as 10 viral copies/sample, is rapid, and has been characterized in 60 COVID-19-infected patients. Compared to automated extraction methods, our pretreatment guarantees the same positivity rate with the advantage of shortening the time of the analysis and reducing its cost. This is a rapid workflow meant to aid the healthcare system in the rapid identification of infected patients, such as during a pathogen-related outbreak. For its intrinsic characteristics, this workflow is suitable for large-scale screenings.


Assuntos
Teste para COVID-19/métodos , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Proteínas do Envelope de Coronavírus/genética , Humanos , Limite de Detecção , Nasofaringe/virologia , Sensibilidade e Especificidade , Fluxo de Trabalho
17.
J Clin Med ; 9(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138288

RESUMO

Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disorder caused by mutations in NPC1 or NPC2 genes. In 2009, the molecular characterization of 44 NPC Italian patients has been published. Here, we present an update of the genetic findings in 105 Italian NPC patients belonging to 83 unrelated families (77 NPC1 and 6 NPC2). NPC1 and NPC2 genes were studied following an algorithm recently published. Eighty-four different NPC1 and five NPC2 alleles were identified. Only two NPC1 alleles remained non detected. Sixty-two percent of NPC1 alleles were due to missense variants. The most frequent NPC1 mutation was the p.F284Lfs*26 (5.8% of the alleles). All NPC2 mutations were found in the homozygous state, and all but one was severe. Among newly diagnosed patients, 18 novel NPC1 mutations were identified. The pathogenic nature of 7/9 missense alleles and 3/4 intronic variants was confirmed by filipin staining and NPC1 protein analysis or mRNA expression in patient's fibroblasts. Taken together, our previous published data and new results provide an overall picture of the molecular characteristics of NPC patients diagnosed so far in Italy.

18.
J Cell Mol Med ; 13(9B): 3786-96, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18774957

RESUMO

Niemann-Pick C disease (NPC) is an autosomal recessive neurodegenerative disorder caused by the abnormal function of NPC1 or NPC2 proteins, leading to an accumulation of unesterified cholesterol and glycosphingolipids (GSLs) in the lysosomes. The mechanisms underlying the pathophysiology in NPC disease are not clear. Oxidative damage is implicated in the pathophysiology of different neurological disorders and the effect of GSL accumulation on the intracellular redox state has been documented. Therefore, we determined whether the intracellular redox state might contribute to the NPC disease pathophysiology. Because the treatment of NPC mice with allopregnanolone (ALLO) increases their lifespan and delays the onset of neurological impairment, we analysed the effect of ALLO on the oxidative damage in human NPC fibroblasts. Concentrations of reactive oxygen species (ROS) and lipid peroxidation were higher in fibroblasts from NPC patients than in fibroblasts from normal subjects. Fibroblasts from NPC patients were more susceptible to cell death through apoptosis after an acute oxidative insult. This process is mediated by activation of the NF-kappaB signalling pathway. Knockdown of NPC1 mRNA both in normal fibroblasts and in human SH-SY5Y neuroblastoma cells caused increased ROS concentrations. ALLO treatment of fibroblasts from NPC patients or NPC1 knockdown cells reduced the levels of ROS and lipid peroxidation and prevented peroxide-induced apoptosis and NF-kB activation. Thus, these findings suggest that oxidative stress might contribute to the NPC disease and ALLO might be beneficial in the treatment of the disease, at least in part, due to its ability to restore the intracellular redox state.


Assuntos
Proteínas de Transporte/metabolismo , Glicoproteínas de Membrana/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Estresse Oxidativo , Pregnanolona/farmacologia , Apoptose , Biópsia , Linhagem Celular Tumoral , Pré-Escolar , Colesterol/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Peroxidação de Lipídeos , Lisossomos/metabolismo , Masculino , Proteína C1 de Niemann-Pick , Oxirredução
19.
Neurogenetics ; 10(1): 49-58, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18758829

RESUMO

We report the molecular characterization of 12 unrelated Italian patients affected with Sandhoff disease (SD), a recessively inherited disorder caused by mutations in HEXB gene. We identified 11 different mutations of which six are novel: one large deletion of 2,406 nt, (c.299+1471_408del2406), one frameshift mutation c.965delT (p.I322fsX32), one nonsense c.1372C>T (p.Q458X), and three splicing mutations (c.299G>T, c.300-2A>G and c.512-1G>T). One allele was only characterized at the messenger RNA (mRNA) level (r = 1170_1242del). Real-time polymerase chain reaction analysis of the HEXB mRNA from fibroblasts derived from patients carrying the novel point mutations showed that the presence of the premature termination codon in the transcript bearing the mutation c.965delT triggers the nonsense-mediated decay (NMD) pathway, which results in the degradation of the aberrant mRNA. The presence of the c.299G>T mutation leads to the degradation of the mutated mRNA by a mechanism other than NMD, while mutations c.300-2A>G and c.512-1G>T cause the expression of aberrant transcripts. In our group, the most frequent mutation was c.850C>T (p.R284X) representing 29% of the alleles. Haplotype analysis suggested that this mutation did not originate from a single genetic event. Interestingly, the common 16-kb deletion mutation was absent. This work provides valuable information regarding the molecular genetics of SD in Italy and provides new insights into the molecular basis of the disease.


Assuntos
Alelos , Mutação , Doença de Sandhoff/genética , Cadeia beta da beta-Hexosaminidase/genética , Sequência de Bases , Análise Mutacional de DNA , Feminino , Genótipo , Haplótipos , Humanos , Itália , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Estrutura Terciária de Proteína , Doença de Sandhoff/fisiopatologia , Cadeia beta da beta-Hexosaminidase/química
20.
Neurogenetics ; 10(3): 229-39, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19252935

RESUMO

Niemann-Pick C, the autosomal recessive neuro-visceral disease resulting from a failure of cholesterol trafficking within the endosomal-lysosomal pathway, is due to mutations in NPC1 or NPC2 genes. We characterized 34 unrelated patients including 32 patients with mutations in NPC1 gene and two patients in NPC2 gene. Overall, 33 distinct genotypes were encountered. Among the 21 unpublished NPC1 alleles, 15 were due to point mutations resulting in 13 codon replacements (p.C100S, p.P237L, p.R389L, p.L472H, p.Y634C, p.S636F, p.V780G, p.Q921P, p.Y1019C, p.R1077Q, p.L1102F, p.A1187V, and p.L1191F) and in two premature stop codons (p.R934X and p.Q447X); a new mutant carried two in cis mutations, p.[L648H;M1142T] and four other NPC1 alleles were small deletions/insertions leading both to frame shifts and premature protein truncations (p.C31WfsX26, p.F284LfsX26, p.E1188fsX54, and p.T1205NfsX53). Finally, the new intronic c.464-2A>C change at the 3' acceptor splice site of intron 4 affected NPC1 messenger RNA processing. We also found a new NPC2 mutant caused by a change of the first codon (p.M1L). The novel missense mutations were further investigated by two bioinformatics approaches. Panther proein classification system computationally predicted the detrimental effect of all new missense mutations occurring at evolutionary conserved positions. The other bioinformatics approach was based on prediction of structural alterations induced by missense mutations on the NPC1 atomic models. The in silico analysis predicted protein malfunctioning and/or local folding alteration for most missense mutations. Moreover, the effects of the missense mutations (p.Y634C, p.S636F, p.L648H, and p.V780G) affecting the sterol-sensing domain (SSD) were evaluated by docking simulation between the atomic coordinates of SSD model and cholesterol.


Assuntos
Proteínas de Transporte/genética , Glicoproteínas/genética , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto , Doença de Niemann-Pick Tipo C/genética , Adolescente , Adulto , Idade de Início , Sequência de Aminoácidos , Criança , Pré-Escolar , Análise Mutacional de DNA , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular , Itália , Modelos Moleculares , Dados de Sequência Molecular , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/fisiopatologia , Fenótipo , Conformação Proteica , Proteínas de Transporte Vesicular , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA