Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropsychiatr ; 36(3): 129-138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38178717

RESUMO

Bradykinin (BK), a well-studied mediator of physiological and pathological processes in the peripheral system, has garnered less attention regarding its function in the central nervous system, particularly in behavioural regulation. This review delves into the historical progression of research focused on the behavioural effects of BK and other drugs that act via similar mechanisms to provide new insights into the pathophysiology and pharmacotherapy of psychiatric disorders. Evidence from experiments with animal models indicates that BK modulates defensive reactions associated with panic symptoms and the response to acute stressors. The mechanisms are not entirely understood but point to complex interactions with other neurotransmitter systems, such as opioids, and intracellular signalling cascades. By addressing the existing research gaps in this field, we present new proposals for future research endeavours to foster a new era of investigation regarding BK's role in emotional regulation. Implications for psychiatry, chiefly for panic and depressive disorders are also discussed.


Assuntos
Bradicinina , Sistema Nervoso Central , Humanos , Animais , Bradicinina/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Transtorno de Pânico/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , Transtorno Depressivo/metabolismo , Transtorno Depressivo/tratamento farmacológico
2.
Eur J Neurosci ; 55(1): 32-48, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850475

RESUMO

Anxiety-related diseases are more than twice as common in women than in men, and in women, symptoms may be exacerbated during the late luteal phase of the menstrual cycle. Despite this, most research into the underlying mechanisms, which drives drug development, have been carried out using male animals. In an effort to redress this imbalance, we compared responses of male and female Wistar rats during exposure to two unconditioned threatening stimuli that evoke panic-related defensive behaviours: confrontation with a predator (Bothrops alternatus) and acute exposure to hypoxia (7% O2 ). Threatened by venomous snake, male and female rats initially displayed defensive attention, risk assessment, and cautious interaction with the snake, progressing to defensive immobility to overt escape. Both males and females displayed higher levels of risk assessment but less interaction with the predator. They also spent more time in the burrow, displaying inhibitory avoidance, and more time engaged in defensive attention, and non-oriented escape behaviour. In females, anxiety-like behaviour was most pronounced in the oestrous and proestrus phases whereas panic-like behaviour was more pronounced during the dioestrus phase, particularly during late dioestrus. Acute hypoxia evoked panic-like behaviour (undirected jumping) in both sexes, but in females, responsiveness in late dioestrus was significantly greater than at other stages of the cycle. The results reveal that females respond in a qualitatively similar manner to males during exposure to naturally occurring threatening stimuli, but the responses of females is oestrous cycle dependent with a significant exacerbation of panic-like behaviour in the late dioestrus phase.


Assuntos
Bothrops , Crotalinae , Animais , Feminino , Humanos , Hipóxia , Masculino , Pânico/fisiologia , Ratos , Ratos Wistar
3.
Behav Pharmacol ; 28(7): 558-564, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28799955

RESUMO

It is known that diabetic (DBT) animals present dysregulation on the serotonergic system in several brain areas associated with anxiety-like responses. The aim of this study was to investigate the involvement of 5-HT1A receptors on dorsal periaqueductal gray (dPAG) in the behavioral response related to panic disorder in type-1 DBT animals. For this, the escape response by electric stimulation (ES) of dPAG in DBT and normoglycemic (NGL) animals was assessed. Both NGL and DBT animals were exposed to an open-field test (OFT) 28 days after DBT confirmation. The current threshold to induce escape behavior in DBT animals was reduced compared with NGL animals. No impairment in locomotor activity was observed when DBT animals were compared with NGL animals. An intra-dPAG injection of the 5-HT1A receptor agonist (±)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) increased the [INCREMENT] threshold in both DBT and NGL, suggesting a panicolytic-like effect. DBT animals presented a more pronounced panicolytic-like response compared with NGL as a higher [INCREMENT] threshold was observed after 8-OH-DPAT treatment, which could be a consequence of the increased expression of the 5-HT1A receptor in the dPAG from DBT animals. Our results are in line with the proposal that a deficiency in serotonergic modulation of the dPAG is involved in triggering the panic attack and the 5-HT1A receptors might be essential for the panicolytic-like response.


Assuntos
Pânico/fisiologia , Substância Cinzenta Periaquedutal/fisiopatologia , Neurônios Serotoninérgicos/metabolismo , Animais , Ansiedade/metabolismo , Diabetes Mellitus Experimental/psicologia , Modelos Animais de Doenças , Reação de Fuga/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38908504

RESUMO

CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.

5.
Cell Tissue Res ; 354(1): 119-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23584609

RESUMO

Panic disorder (PD) is a subtype of anxiety disorder in which the core phenomenon is the spontaneous occurrence of panic attacks. Although studies with laboratory animals have been instrumental for the understanding of its neurobiology and treatment, few review articles have focused on the validity of the currently used animal models for studying this psychopathology. Therefore, the aim of the present paper is to discuss the strengths and limits of these models in terms of face, construct and predictive validity. Based on the hypothesis that panic attacks are related to defensive responses elicited by proximal threat, most animal models measure the escape responses induced by specific stimuli. Some apply electrical or chemical stimulation to brain regions proposed to modulate fear and panic responses, such as the dorsal periaqueductal grey or the medial hypothalamus. Other models focus on the behavioural consequences caused by the exposure of rodents to ultrasound or natural predators. Finally, the elevated T-maze associates a one-way escape response from an open arm with panic attacks. Despite some limitations, animal models are essential for a better understanding of the neurobiology and pharmacology of PD and for discovering more effective treatments.


Assuntos
Modelos Animais de Doenças , Transtorno de Pânico , Animais , Humanos , Roedores
6.
Behav Brain Res ; 455: 114663, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37703950

RESUMO

Clinical and preclinical studies point towards anxiolytic actions of cannabidiol (CBD), but its effect in panic disorder has been less explored and few studies consider effects in females. We here compared the effect of CBD on the response of male and female rats and mice to a panicogenic challenge; exposure to low O2 (rats) or high CO2 (mice) paying attention in females to possible effects of estrous cycle phase. Male and female Sprague-Dawley rats and C57BL/6 J mice were exposed to 7% O2 for 5 min (rats) or 20% CO2 (mice) and escape behaviour, which has been associated with panic attacks, was quantified as undirected jumps towards the gas chamber's ceiling. The effect of pretreatment with CBD (1-10 mg kg-1 i.p. in rats or 10-60 mg kg-1 i.p. in mice) was tested. The results showed that low O2 (rats) or high CO2 (mice) evoked escape in both sexes. In female rats the response was estrous cycle-sensitive: females in late diestrus made significantly more jumps than females in proestrus. In female mice escape was not influenced by estrous cycle phase and CBD was panicolytic. In female rats CBD attenuated escape behaviour in late diestrus phase but not in proestrus. In male rats and mice CBD had no effect on escape behaviour. Therefore, CBD is panicolytic in female rats and mice but not in males. In rats the effect is estrous cycle-sensitive: rats were most responsive to CBD in late diestrus. In mice higher doses were required to elicit effects and estrous cycle had no effect.

7.
Int J Neuropsychopharmacol ; 15(3): 389-400, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21733232

RESUMO

A growing body of evidence indicates that facilitation of serotonin-2C receptor (5-HT2CR)-mediated neurotransmission in the basolateral nucleus of the amygdala (BLA) is involved in anxiety generation. We investigated here whether BLA 5-HT2CRs exert a differential role in the regulation of defensive behaviours related to generalized anxiety (inhibitory avoidance) and panic (escape) disorders. We also evaluated whether activation of BLA 5-HT2CRs accounts for the anxiogenic effect caused by acute systemic administration of the antidepressants imipramine and fluoxetine. Male Wistar rats were tested in the elevated T-maze after intra-BLA injection of the endogenous agonist 5-HT, the 5-HT2CR agonist MK-212 or the 5-HT2CR antagonist SB-242084. This test allows the measurement of inhibitory avoidance acquisition and escape expression. We also investigated whether intra-BLA administration of SB-242084 interferes with the acute anxiogenic effect caused by imipramine and fluoxetine in the Vogel conflict test, and imipramine in the elevated T-maze. While intra-BLA administration of 5-HT and MK-212 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, SB-242084 had the opposite effect. None of these drugs affected escape performance. Intra-BLA injection of a sub-effective dose of SB-242084 fully blocked the anxiogenic effect caused either by the local microinjection of 5-HT or the systemic administration of imipramine and fluoxetine. Our findings indicate that 5-HT2CRs in BLA are selectively involved in the regulation of defensive behaviours associated with generalized anxiety, but not panic. The results also provide the first direct evidence that activation of BLA 5-HT2CRs accounts for the short-term aversive effect of antidepressants.


Assuntos
Ansiolíticos/farmacologia , Transtornos de Ansiedade/tratamento farmacológico , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Fluoxetina/farmacologia , Imipramina/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Aminopiridinas/farmacologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Antidepressivos Tricíclicos/farmacologia , Transtornos de Ansiedade/fisiopatologia , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Indóis/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Testes Neuropsicológicos , Pirazinas/farmacologia , Ratos Wistar , Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia
8.
Behav Pharmacol ; 23(1): 80-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22139606

RESUMO

Changes in brain-derived neurotrophic factor (BDNF)-mediated signaling in the hippocampus have been implicated in the etiology of depression and in the mode of action of antidepressant drugs. There is also evidence from animal studies to suggest that BDNF-induced changes in the hippocampus may play a role in another stress-related pathology: anxiety. However, it is still unknown whether this neurotrophin plays a differential role in defensive responses associated with distinguished subtypes of anxiety disorders found in the clinic, such as generalized anxiety and panic disorder. In the present study, we investigated the effect of an acute BDNF injection into the rat dorsal hippocampus (DH) on inhibitory avoidance acquisition and escape expression measured in the elevated T-maze (ETM). We also assessed whether serotonergic neurotransmission may account for such effects. Intra-DH BDNF injection (200 pg) facilitated inhibitory avoidance in ETM. BDNF was equally anxiogenic in the light/dark transition test. Preadministration of the 5-HT1A receptor antagonist WAY-100635 fully counteracted the anxiogenic effect of BDNF in both tests. Intra-DH midazolam administration (10 nmol) impaired avoidance acquisition in ETM, suggesting an anxiolytic effect. Therefore, in the DH, facilitation of BDNF signaling seems to enhance 5-HT1A receptor-mediated neurotransmission to exert an anxiogenic effect associated with generalized anxiety.


Assuntos
Ansiedade/psicologia , Mecanismos de Defesa , Hipocampo/efeitos dos fármacos , Pânico , Receptor 5-HT1A de Serotonina/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Masculino , Aprendizagem em Labirinto , Midazolam/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar
9.
Behav Brain Res ; 418: 113651, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34732354

RESUMO

The antidepressant effect of ketamine has been widely acknowledged and the use of one of its enantiomers, S-ketamine (esketamine), has recently been approved for the clinical management of treatment-resistant depression. As with ketamine, the non-selective opioid receptor-interacting drug buprenorphine is reported to have antidepressant and anxiolytic properties in humans and rodents. Given the fact that antidepressant drugs are also first line treatment for panic disorder, it is surprising that the potential panicolytic effect of these compounds has been scarcely (ketamine), or not yet (buprenorphine) investigated. We here evaluated the effects of ketamine (the racemic mixture), esketamine, and buprenorphine in male Wistar rats submitted to a panicogenic challenge: acute exposure to hypoxia (7% O2). We observed that esketamine (20 mg/kg), but not ketamine, decreased the number of escape attempts made during hypoxia, and this effect could be observed even 7 days after the drug administration. A panicolytic-like effect was also observed with MK801, which like esketamine, antagonizes NMDA glutamate receptors. Buprenorphine (0.3 mg/kg) also impaired hypoxia-induced escape, an effect blocked by the non-selective opioid receptor antagonist naloxone, indicating an interaction with classical ligand sites, such as µ and kappa receptors, but not with nociception/orphanin FQ receptors. Altogether, the results suggest that esketamine and buprenorphine cause rapid-onset panicolytic-like effects, and may be alternatives for treating panic disorder, particularly in patients who are refractory to standard pharmacological treatment.


Assuntos
Analgésicos Opioides/uso terapêutico , Antidepressivos/farmacologia , Buprenorfina/uso terapêutico , Hipóxia/tratamento farmacológico , Ketamina/farmacologia , Animais , Ansiolíticos/uso terapêutico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Humanos , Locomoção , Masculino , Ratos , Ratos Wistar
10.
Behav Brain Res ; 434: 114031, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35908666

RESUMO

A wealth of evidence associates disruptions of the parent-infant relationship (e.g. childhood parental loss or parental neglect) with the later appearance of panic disorder. In rodents, neonatal maternal separation and maternal deprivation (MD) are reported to increase the expression of anxiety-related defensive responses in adult animals. However, little is known about the long-term consequences of these early-life stressors in animal models of panic. We here investigated the effects of a single 24 h-episode of MD on post-natal day 11 (PND 11) in adult male Wistar rats submitted to two animal models that associate escape expression with panic attacks: the elevated T-maze and exposure to severe hypoxia (7% O2). We also investigated the involvement of serotonin (5-HT) in the observed changes. Although neonatal MD did not affect the behavioral responses measured in the elevated T-maze, it facilitated the expression of escape during hypoxia exposure, indicating a panicogenic-like effect. Pre-test administration of the 5-HT synthesis inhibitor, para-chlorophenylalanine (PCPA; 4 daily injections of 100 mg/kg) facilitated escape attempts in non-deprived animals during the hypoxia challenge, but did not interfere with the expression of this behavior in maternally-deprived rats. The levels of 5-HT1A receptors in key panic- and anxiety-associated areas, the dorsal periaqueductal gray and amygdala, respectively, were not different between previously deprived and non-deprived animals. Plasma corticosterone levels were significantly increased by hypoxia exposure, independently of the animals' previous stress condition or PCPA administration. Therefore, MD on PND 11 predisposes the adult animal to the panic-evoking effects of severe hypoxia, a stimulus also reported to induce panic attacks in humans. The lack of PCPA effect on the pro-escape consequence of MD may be indicative that 5-HT signaling is impaired in the stressed animal.


Assuntos
Privação Materna , Serotonina , Animais , Animais Recém-Nascidos , Reação de Fuga , Fenclonina , Hipóxia , Masculino , Pânico , Substância Cinzenta Periaquedutal , Ratos , Ratos Wistar
11.
Front Psychiatry ; 12: 711065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531768

RESUMO

Anxiety disorders are more prevalent in women than in men. In women the menstrual cycle introduces another variable; indeed, some conditions e.g., premenstrual syndrome, are menstrual cycle specific. Animal models of fear and anxiety, which form the basis for research into drug treatments, have been developed almost exclusively, using males. There remains a paucity of work using females and the available literature presents a confusing picture. One confound is the estrous cycle in females, which some authors consider, but many do not. Importantly, there are no accepted standardized criteria for defining cycle phase, which is important given the rapidly changing hormonal profile during the 4-day cycle of rodents. Moreover, since many behavioral tests that involve a learning component or that consider extinction of a previously acquired association require several days to complete; the outcome may depend on the phase of the cycle on the days of training as well as on test days. In this article we consider responsiveness of females compared to males in a number of commonly used behavioral tests of anxiety and fear that were developed in male rodents. We conclude that females perform in a qualitatively similar manner to males in most tests although there may be sex and strain differences in sensitivity. Tests based on unconditioned threatening stimuli are significantly influenced by estrous cycle phase with animals displaying increased responsiveness in the late diestrus phase of the cycle (similar to the premenstrual phase in women). Tests that utilize conditioned fear paradigms, which involve a learning component appear to be less impacted by the estrous cycle although sex and cycle-related differences in responding can still be detected. Ethologically-relevant tests appear to have more translational value in females. However, even when sex differences in behavior are not detected, the same outward behavioral response may be mediated by different brain mechanisms. In order to progress basic research in the field of female psychiatry and psychopharmacology, there is a pressing need to validate and standardize experimental protocols for using female animal models of anxiety-related states.

12.
J Psychopharmacol ; 35(12): 1523-1535, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34872406

RESUMO

BACKGROUND: Acute hypoxia, which is panicogenic in humans, also evokes panic-like behavior in male rats. Panic disorder is more common in women and susceptibility increases during the premenstrual phase of the cycle. AIMS: We here investigated for the first time the impact of hypoxia on the expression of panic-like escape behavior by female rats and its relationship with the estrous cycle. We also evaluated functional activation of the midbrain panic circuitry in response to this panicogenic stimulus and whether short-term, low-dose fluoxetine treatment inhibits the hyper-responsiveness of females in late diestrus. METHODS: Male and female Sprague Dawley rats were exposed to 7% O2. Females in late diestrus were also tested after short-term treatment with fluoxetine (1.75 or 10 mg/kg, i.p.). Brains were harvested and processed for c-Fos and tryptophan hydroxylase immunoreactivity in the periaqueductal gray matter (PAG) and dorsal raphe nucleus (DR). RESULTS: Acute hypoxia evoked escape in both sexes. Overall, females were more responsive than males and this is clearer in late diestrus phase. In both sexes, hypoxia induced functional activation (c-Fos expression) in non-serotonergic cells in the lateral wings of the DR and dorsomedial PAG, which was greater in late diestrus than proestrus (lowest behavioral response to hypoxia). Increased responding in late diestrus (behavioral and cellular levels) was prevented by 1.75, but not 10 mg/kg fluoxetine. DISCUSSION: The response of female rats to acute hypoxia models panic behavior in women. Low-dose fluoxetine administered in the premenstrual phase deserves further attention for management of panic disorders in women.


Assuntos
Comportamento Animal/efeitos dos fármacos , Diestro/efeitos dos fármacos , Núcleo Dorsal da Rafe/efeitos dos fármacos , Fluoxetina/farmacologia , Hipóxia/complicações , Pânico/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Caracteres Sexuais , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ciclo Menstrual/efeitos dos fármacos , Transtorno de Pânico/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem
13.
Behav Brain Res ; 408: 113296, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33862061

RESUMO

Changes in 5-HT1A receptor (5-HT1AR)-mediated neurotransmission in the hippocampus have been associated with anxiety, depression and in the mode of action of antidepressant drugs. It has been commonly accepted that whereas the dorsal pole of the hippocampus (DH) is involved in cognitive processing, the ventral pole (VH) is associated with emotional regulation. However, to date, only a few studies have directly addressed the role played by VH 5-HT1ARs in anxiety and panic processing, and their results are conflicting. Here we report that intra-VH administration of the 5-HT1A receptor agonist 8-OH-DPAT, the endogenous agonist serotonin (5-HT), or the standard anxiolytic benzodiazepine midazolam impaired the acquisition of inhibitory avoidance in the elevated T-maze (ETM) of male Wistar rats, indicating an anxiolytic effect. Conversely, local injection of the 5-HT1AR antagonist WAY-100635 caused the opposite effect. These results were equally found in the Vogel conflict test. None of these drugs interfered with locomotor activity in the open-field test, nor did they alter the expression of the escape response in the ETM, a defensive behavior associated with panic. Pre-injection of a sub-effective dose of WAY-100635 in the VH blocked the anxiolytic effect of 5-HT or 8-OH-DPAT in the Vogel test, confirming the involvement of 5-HT1AR for this behavioral effect. The effect in this test was anxiety-selective as none of the drugs affected water consumption or nociception. In conclusion, our results suggest that 5-HT1ARs in the VH play a tonic inhibitory role in anxiety processing. These receptors, however, are not involved in the regulation of panic-related escape behavior.


Assuntos
Ansiedade , Comportamento Animal/fisiologia , Hipocampo , Pânico/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Pânico/efeitos dos fármacos , Ratos , Ratos Wistar , Antagonistas da Serotonina/farmacologia
14.
Behav Brain Res ; 404: 113159, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33571572

RESUMO

Antidepressant drugs are first-line treatment for panic disorder. Facilitation of 5-HT1A receptor-mediated neurotransmission in the dorsal periaqueductal gray (dPAG), a key panic-associated area, has been implicated in the panicolytic effect of the selective serotonin reuptake inhibitor fluoxetine. However, it is still unknown whether this mechanism accounts for the antipanic effect of other classes of antidepressants drugs (ADs) and whether the 5-HT interaction with 5-HT2C receptors in this midbrain area (which increases anxiety) is implicated in the anxiogenic effect caused by short-term treatment with ADs. The results showed that previous injection of the 5-HT1A receptor antagonist WAY-100635 in the dPAG blocked the panicolytic-like effect caused by chronic systemic administration of the tricyclic AD imipramine in male Wistar rats tested in the elevated T-maze. Neither chronic treatment with imipramine nor fluoxetine changed the expression of 5-HT1A receptors in the dPAG. Treatment with these ADs also failed to significantly change ERK1/2 (extracellular-signal regulated kinase) phosphorylation level in this midbrain area. Blockade of 5-HT2C receptors in the dPAG with the 5-HT2C receptor antagonist SB-242084 did not change the anxiogenic effect caused by a single acute injection of fluoxetine or imipramine in the Vogel conflict test. These results reinforce the view that the facilitation of 5-HT1A receptor-mediated neurotransmission in the dPAG is a common mechanism involved in the panicolytic effect caused by chronic administration of ADs. On the other hand, the anxiogenic effect observed after short-term treatment with these drugs does not depend on 5-HT2C receptors located in the dPAG.


Assuntos
Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Pânico/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/fisiologia , Aminopiridinas/farmacologia , Animais , Western Blotting , Teste de Labirinto em Cruz Elevado , Fluoxetina/farmacologia , Imipramina/farmacologia , Indóis/farmacologia , Masculino , Teste de Campo Aberto/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
15.
Int J Neuropsychopharmacol ; 13(8): 1079-88, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19941697

RESUMO

Chronic administration of antidepressants such as fluoxetine and imipramine increases the responsiveness of 5-HT(1A) receptors in dorsal periaqueductal grey matter (DPAG), a midbrain area consistently implicated in the pathogenesis of panic disorder. This effect has been related to the clinically relevant anti-panic action of these drugs. In this study we determined whether long-term administration of fluoxetine also affects 5-HT efflux in DPAG. As a comparison, the effect of chronic treatment with the anxiolytic 5-HT(1A) receptor agonist buspirone on DPAG 5-HT levels was assessed. We also investigated whether the inhibitory effect of chronic fluoxetine on escape behaviour in the rat elevated T-maze, considered as a panicolytic-like effect, is counteracted by intra-DPAG injection of the 5-HT(1A) receptor antagonist WAY 100635. Male Wistar rats were treated (1 or 21 d, i.p.) with fluoxetine, buspirone or vehicle, once daily. After treatment, 5-HT in DPAG was measured by in-vivo microdialysis coupled to HPLC. In another study, rats treated (21 d, i.p.) with either fluoxetine or vehicle also received intra-DPAG injection of WAY 100635 or saline 10 min before being tested in the elevated T-maze. Chronic, but not acute, administration of fluoxetine significantly raised extracellular levels of 5-HT in DPAG. Long-term treatment with buspirone was ineffective. In the elevated T-maze, intra-DPAG injection of WAY 100635 fully blocked the anti-escape effect of chronic administration of fluoxetine. Therefore, chronic fluoxetine facilitates 5-HT(1A)-mediated neurotransmission within DPAG and this effect accounts for the panicolytic-like effect of this antidepressant in the elevated T-maze.


Assuntos
Ansiolíticos/farmacologia , Fluoxetina/farmacologia , Transtorno de Pânico , Substância Cinzenta Periaquedutal/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Transmissão Sináptica/fisiologia , Animais , Ansiolíticos/uso terapêutico , Fluoxetina/uso terapêutico , Masculino , Transtorno de Pânico/tratamento farmacológico , Transtorno de Pânico/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Ratos , Ratos Wistar , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
16.
Int J Neuropsychopharmacol ; 13(5): 573-82, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20047714

RESUMO

A wealth of evidence suggests a role for brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) in the aetiology of depression and in the mode of action of antidepressant drugs. Less clear is the involvement of this neurotrophin in other stress-related pathologies such as anxiety disorders. The dorsal periaqueductal grey matter (DPAG), a midbrain area rich in BDNF and TrkB receptor mRNAs and proteins, has been considered a key structure in the pathophysiology of panic disorder. In this study we investigated the effect of intra-DPAG injection of BDNF in a proposed animal model of panic: the escape response evoked by the electrical stimulation of the same midbrain area. To this end, the intensity of electrical current that needed to be applied to DPAG to evoke escape behaviour was measured before and after microinjection of BDNF. We also assessed whether 5-HT- or GABA-related mechanisms may account for the putative behavioural/autonomic effects of the neurotrophin. BDNF (0.05, 0.1, 0.2 ng) dose-dependently inhibited escape performance, suggesting a panicolytic-like effect. Local microinjection of K252a, an antagonist of TrkB receptors, or bicuculline, a GABAA receptor antagonist, blocked this effect. Intra-DPAG administration of WAY-100635 or ketanserin, respectively 5-HT1A and 5-HT2A/2C receptor antagonists, did not alter BDNF's effects on escape. Bicuculline also blocked the inhibitory effect of BDNF on mean arterial pressure increase caused by electrical stimulation of DPAG. Therefore, in the DPAG, BDNF-TrkB signalling interacts with the GABAergic system to cause a panicolytic-like effect.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Transtorno de Pânico/metabolismo , Transtorno de Pânico/fisiopatologia , Substância Cinzenta Periaquedutal/fisiologia , Serotonina/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Humanos , Injeções Intraventriculares , Masculino , Transtorno de Pânico/psicologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Ratos Wistar , Receptor trkB/metabolismo , Receptor trkB/fisiologia , Receptores de Serotonina/fisiologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/biossíntese , Serotonina/metabolismo , Antagonistas da Serotonina/administração & dosagem , Ácido gama-Aminobutírico/metabolismo
17.
J Psychopharmacol ; 34(4): 391-399, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31637976

RESUMO

BACKGROUND: Stimulation of serotonergic neurons within the dorsal raphe dorsomedial subnucleus facilitates inhibitory avoidance acquisition in the elevated T-maze. It has been hypothesized that such anxiogenic effect is due to serotonin release in the basolateral nucleus of the amygdala, where facilitation of serotonin 2C receptor-mediated neurotransmission increases anxiety. Besides the dorsal raphe dorsomedial subnucleus, the dorsal raphe caudal subnucleus is recruited by anxiogenic stimulus/situations. However, the behavioral consequences of pharmacological manipulation of this subnucleus are still unknown. AIMS: Investigate whether blockade of serotonin 2C receptors in the basolateral nucleus of the amygdala counteracts the anxiogenic effect caused by the stimulation of dorsal raphe dorsomedial subnucleus serotonergic neurons. Evaluate the effects caused by the excitatory amino acid kainic acid or serotonin 1A receptor-modulating drugs in the dorsal raphe caudal subnucleus. METHODS: Male Wistar rats were tested in the elevated T-maze and light-dark transition tests after intra-basolateral nucleus of the amygdala injection of the serotonin 2C receptor antagonist SB-242084 (6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride) followed by intra-dorsal raphe dorsomedial subnucleus administration of the serotonin 1A receptor antagonist WAY-100635 (N-[2-[4-2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinil-cyclohexanecarboxamide maleate). In the dorsal raphe caudal subnucleus, animals were injected with kainic acid, WAY-100635 or the serotonin 1A receptor agonist 8-OH-DPAT ((±)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide) and tested in the elevated T-maze. RESULTS: SB-242084 in the basolateral nucleus of the amygdala blocked the anxiogenic effect caused by the injection of WAY-100635 in the dorsal raphe dorsomedial subnucleus. Kainic acid in the dorsal raphe caudal subnucleus increased anxiety, but also impaired escape expression in the elevated T-maze. Neither WAY-100635 nor 8-OH-DPAT in the dorsal raphe caudal subnucleus affected rat's behavior in the elevated T-maze. CONCLUSION: Serotonin 2C receptors in the basolateral nucleus of the amygdala mediate the anxiogenic effect caused by the stimulation of serotonergic neurons in the dorsal raphe dorsomedial subnucleus. The dorsal raphe caudal subnucleus regulates anxiety- and panic-like behaviors, presumably by a serotonin 1A receptor-independent mechanism.


Assuntos
Ansiedade/induzido quimicamente , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Núcleo Dorsal da Rafe/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Aminopiridinas/farmacologia , Animais , Ansiedade/psicologia , Estimulação Elétrica , Indóis/farmacologia , Ácido Caínico , Masculino , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Neurônios Serotoninérgicos/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
18.
J Psychopharmacol ; 34(4): 383-390, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32108540

RESUMO

INTRODUCTION AND OBJECTIVES: Oxytocin (OT) has been widely linked to positive social interactions, and there is great interest in OT as a therapy for a variety of neuropsychiatric conditions. Recent evidence also suggests that OT can play an important role in the mediation of anxiety-associated defensive responses, including a role for serotonin (5-HT) neurotransmission in this action. However, it is presently unknown whether OT additionally regulates the expression of panic-related behaviors, such as escape, by acting in the dorsal periaqueductal gray (dPAG), a key panic-regulating area. This study aimed to investigate the consequence of OT injection in the dPAG on escape expression and whether facilitation of 5-HT neurotransmission in this midbrain area is implicated in this action. METHODS: Male Wistar rats were injected with OT in the dPAG and tested for escape expression in the elevated T-maze (ETM) and dPAG electrical stimulation tests. Using the latter test, OT's effect was also investigated after previous intra-dPAG injection of the OT receptor antagonist atosiban, the preferential antagonists of 5-HT1A and 5-HT2A receptors, WAY-100635 and ketanserin, respectively, or systemic pretreatment with the 5-HT synthesis inhibitor p-CPA. RESULTS: OT impaired escape expression in the two tests used, suggesting a panicolytic-like effect. In the ETM, the peptide also facilitated inhibitory avoidance acquisition, indicating an anxiogenic effect. Previous administration of atosiban, WAY-100635, ketanserin, or p-CPA counteracted OT's anti-escape effect. CONCLUSIONS: OT and 5-HT in the dPAG interact in the regulation of panic- and anxiety-related defensive responses. These findings open new perspectives for the development of novel therapeutic strategies for the treatment of anxiety disorders.


Assuntos
Ansiolíticos/farmacologia , Ocitocina/farmacologia , Pânico/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Serotonina/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Estimulação Elétrica , Eletrodos Implantados , Reação de Fuga/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptores de Ocitocina/antagonistas & inibidores , Antagonistas da Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Vasotocina/análogos & derivados , Vasotocina/farmacologia
19.
Behav Brain Res ; 378: 112263, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31568834

RESUMO

BACKGROUND: Antidepressants are the first-choice for pharmacological treatment of panic disorder. However, they present disadvantages, such as delayed therapeutic effect, many side effects and a considerable rate of non-responders. These shortcomings prompt the development of new therapeutic strategies. Among these are the adjunctive use of enkephalinase inhibitors, such as opiorphin, which supposedly acts by increasing the availability of brain enkephalins and other endogenous opioids. AIMS: We here evaluated whether opiorphin in the dorsal periaqueductal grey matter (dPAG), a key panic-related area, accelerates and/or facilitates the antipanic-like effect of fluoxetine or imipramine. We also verified whether the panicolytic effect of imipramine depends on activation of µ-opioid receptors (MORs). METHODS: Male Wistar rats were submitted to the escape task of the elevated T-maze, an index of panic attack, after treatment with imipramine (3, 7 or 21 days) or fluoxetine (3, 7, 14 or 21 days), combined with an intra-dPAG injection of opiorphin. RESULTS: Opiorphin facilitated and accelerated the panicolytic-like effect caused by imipramine, but not with fluoxetine. The antipanic-like effect caused by chronic imipramine did not depend on MOR activation in the dPAG. CONCLUSION: Combined treatment of antidepressant drugs with opiorphin for hastening or potentiating the effects of the former compounds may not be generally effective, with the results varying depending on the type/class of these panicolytic drugs.


Assuntos
Antidepressivos/farmacologia , Fluoxetina/farmacologia , Imipramina/farmacologia , Neprilisina/antagonistas & inibidores , Oligopeptídeos/farmacologia , Transtorno de Pânico/tratamento farmacológico , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Proteínas e Peptídeos Salivares/farmacologia , Animais , Antidepressivos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Interações Medicamentosas , Quimioterapia Combinada , Fluoxetina/administração & dosagem , Imipramina/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Inibidores de Proteases/administração & dosagem , Ratos , Ratos Wistar , Proteínas e Peptídeos Salivares/administração & dosagem
20.
Behav Pharmacol ; 20(3): 252-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19407657

RESUMO

The brain noradrenergic system has been implicated in the expression of defensive behaviors elicited by acute stress. The dorsal periaqueductal gray area (dPAG) is a key structure involved in the behavioral and cardiovascular responses elicited by fear and anxiety situations. Although there are noradrenergic terminals in the dPAG, few studies have investigated the role of noradrenaline (NA) in the dPAG on anxiety modulation. The aim of this study was to evaluate the effect of NA microinjection into the dPAG of rats subjected to two animal models of anxiety, the elevated plus-maze and the Vogel conflict test. Male Wistar rats implanted with a guide cannula aimed at the dPAG received microinjections of NA (3, 15, or 45 nmol/0.05 microl) or artificial cerebral spinal fluid into the dPAG immediately before being exposed to the elevated plus-maze or the Vogel conflict test. NA increased the exploration of the open arms and the number of enclosed arm entries in the elevated plus-maze. The increase in open arm exploration remained significant after being subjected to an analysis of covariance using the latter variable as covariate. Moreover, the NA microinjection into the dPAG did not increase general exploratory activity of animals subjected to the open-field test, indicating that the increase in open arm exploration cannot be attributed to a nonspecific increase in exploratory activity. In the Vogel test, the NA microinjection into the dPAG increased the number of punished licks without changing the number of nonpunished licks or interfering with the tail-flick test. The results, therefore, indicate that the NA microinjection into the dPAG produces anxiolytic-like effects, suggesting its possible involvement in the anxiety modulation.


Assuntos
Ansiedade/fisiopatologia , Conflito Psicológico , Comportamento Exploratório/efeitos dos fármacos , Norepinefrina/fisiologia , Substância Cinzenta Periaquedutal/fisiopatologia , Animais , Ansiolíticos/administração & dosagem , Ansiolíticos/farmacologia , Ansiedade/metabolismo , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Masculino , Microinjeções , Norepinefrina/administração & dosagem , Norepinefrina/farmacologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA