Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(4)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29642468

RESUMO

The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery.


Assuntos
Vinho , Fermentação , Fluorescência , Itália , Oxigênio
2.
Micromachines (Basel) ; 13(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36014188

RESUMO

The defectiveness of InGaN-based quantum wells increases with low indium contents, due to the compressive strain induced by the lattice mismatch between the InGaN and GaN layers, and to the stronger incorporation of defects favored by the presence of indium. Such defects can limit the performance and the reliability of LEDs, since they can act as non-radiative recombination centers, and favor the degradation of neighboring semiconductor layers. To investigate the location of the layers mostly subjected to degradation, we designed a color-coded structure with two quantum wells having different indium contents. By leveraging on numerical simulations, we explained the experimental results in respect of the ratio between the emissions of the two main peaks as a function of current. In addition, to evaluate the mechanisms that limit the reliability of this type of LED, we performed a constant-current stress test at high temperature, during which we monitored the variation in the optical characteristics induced by degradation. By comparing experimental and simulated results, we found that degradation can be ascribed to an increment of traps in the active region. This process occurs in two different phases, with different rates for the two quantum wells. The first phase mainly occurs in the quantum well closer to the p-contact, due to an increment of defectiveness. Degradation follows an exponential trend, and saturates during the second phase, while the quantum well close to the n-side is still degrading, supporting the hypothesis of the presence of a diffusive front that is moving from the p-side towards the n-side. The stronger degradation could be related to a lowering of the injection efficiency, or an increment of SRH recombination driven by a recombination-enhanced defect generation process.

3.
Sci Rep ; 12(1): 1755, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110655

RESUMO

Trapping phenomena degrade the dynamic performance of wide-bandgap transistors. However, the identification of the related traps is challenging, especially in presence of non-ideal defects. In this paper, we propose a novel methodology (trap-state mapping) to extract trap parameters, based on the mathematical study of stretched exponential recovery kinetics. To demonstrate the effectiveness of the approach, we use it to identify the properties of traps in AlGaN/GaN transistors, submitted to hot-electron stress. After describing the mathematical framework, we demonstrate that the proposed methodology can univocally describe the properties of the distribution of trap states. In addition, to prove the validity and the usefulness of the model, the trap properties extracted mathematically are used as input for TCAD simulations. The results obtained by TCAD closely match the experimental transient curves, thus confirming the accuracy of the trap-state mapping procedure. This methodology can be adopted also on other technologies, thus constituting a universal approach for the analysis of multiexponential trapping kinetics.

4.
Materials (Basel) ; 14(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673671

RESUMO

We present a detailed analysis of the gradual degradation mechanisms of InGaAs Light-Emitting Diodes (LEDs) tuned for optical emission in the 1.45-1.65 µm range. Specifically, we propose a simple and effective methodology for estimating the relative changes in non-radiative lifetime, and a procedure for extracting the properties of defects responsible for Shockley-Read-Hall recombination. By means of a series of accelerated aging experiments, during which we evaluated the variations of the optical and electrical characteristics of three different families of LEDs, we were able to identify the root causes of device degradation. Specifically, the experimental results show that, both for longer stress time at moderate currents or for short-term stress under high injection levels, all the devices are affected: (i) by a partial recovery of the optical emission at the nominal bias current; and (ii) by a decrease in the emission in low-bias regime. This second process was deeply investigated, and was found to be related to the decrease in the non-radiative Shockley-Read-Hall (SRH) lifetime due to the generation/propagation of defects within the active region of the LEDs. Devices tuned for longer-wavelength emission exhibited a second degradation process, which was found to modify the carrier injection dynamics and further speed-up optical degradation in the low bias regime. These processes were ascribed to the effects of a second non-radiative recombination center, whose formation within the active region of the device was induced by the aging procedure. Through mathematical analysis of the degradation data, we could quantify the percentage variation in SRH lifetime, and identify the activation energy of the related defects.

5.
Materials (Basel) ; 14(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946929

RESUMO

We report on the design, characterization and validation of a spherical irradiation system for inactivating SARS-CoV-2, based on UV-C 275 nm LEDs. The system is designed to maximize irradiation intensity and uniformity and can be used for irradiating a volume of 18 L. To this aim: (i) several commercially available LEDs have been acquired and analyzed; (ii) a complete optical study has been carried out in order to optimize the efficacy of the system; (iii) the resulting prototype has been characterized optically and tested for the inactivation of SARS-CoV-2 for different exposure times, doses and surface types; (iv) the result achieved and the efficacy of the prototype have been compared with similar devices based on different technologies. Results indicate that a 99.9% inactivation can be reached after 1 min of treatment with a dose of 83.1 J/m2.

6.
Materials (Basel) ; 14(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946943

RESUMO

The vertical Gallium Nitride-on-Silicon (GaN-on-Si) trench metal-oxide-semiconductor field effect transistor (MOSFET) is a promising architecture for the development of efficient GaN-based power transistors on foreign substrates for power conversion applications. This work presents an overview of recent case studies, to discuss the most relevant challenges related to the development of reliable vertical GaN-on-Si trench MOSFETs. The focus lies on strategies to identify and tackle the most relevant reliability issues. First, we describe leakage and doping considerations, which must be considered to design vertical GaN-on-Si stacks with high breakdown voltage. Next, we describe gate design techniques to improve breakdown performance, through variation of dielectric composition coupled with optimization of the trench structure. Finally, we describe how to identify and compare trapping effects with the help of pulsed techniques, combined with light-assisted de-trapping analyses, in order to assess the dynamic performance of the devices.

7.
Micromachines (Basel) ; 12(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923422

RESUMO

This work investigates p+n-n GaN-on-Si vertical structures, through dedicated measurements and TCAD simulations, with the ultimate goal of identifying possible strategies for leakage and breakdown optimization. First, the dominant leakage processes were identified through temperature-dependent current-voltage characterization. Second, the breakdown voltage of the diodes was modelled through TCAD simulations based on the incomplete ionization of Mg in the p+ GaN layer. Finally, the developed simulation model was utilized to estimate the impact of varying the p-doping concentration on the design of breakdown voltage; while high p-doped structures are limited by the critical electric field at the interface, low p-doping designs need to contend with possible depletion of the entire p-GaN region and the consequent punch-through. A trade-off on the value of p-doping therefore exists to optimize the breakdown.

8.
Materials (Basel) ; 13(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114060

RESUMO

We propose to use a bilayer insulator (2.5 nm Al2O3 + 35 nm SiO2) as an alternative to a conventional uni-layer Al2O3 (35 nm), for improving the performance and the reliability of GaN-on-Si semi vertical trench MOSFETs. This analysis has been performed on a test vehicle structure for module development, which has a limited OFF-state performance. We demonstrate that devices with the bilayer dielectric present superior reliability characteristics than those with the uni-layer, including: (i) gate leakage two-orders of magnitude lower; (ii) 11 V higher off-state drain breakdown voltage; and (iii) 18 V higher gate-source breakdown voltage. From Weibull slope extractions, the uni-layer shows an extrinsic failure, while the bilayer presents a wear-out mechanism. Extended reliability tests investigate the degradation process, and hot-spots are identified through electroluminescence microscopy. TCAD simulations, in good agreement with measurements, reflect electric field distribution near breakdown for gate and drain stresses, demonstrating a higher electric field during positive gate stress. Furthermore, DC capability of the bilayer and unilayer insulators are found to be comparable for same bias points. Finally, comparison of trapping processes through double pulsed and Vth transient methods confirms that the Vth shifts are similar, despite the additional interface present in the bilayer devices.

9.
Materials (Basel) ; 13(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992721

RESUMO

The aim of this work is to demonstrate high breakdown voltage and low buffer trapping in superlattice GaN-on-Silicon heterostructures for high voltage applications. To this aim, we compared two structures, one based on a step-graded (SG) buffer (reference structure), and another based on a superlattice (SL). In particular, we show that: (i) the use of an SL allows us to push the vertical breakdown voltage above 1500 V on a 5 µm stack, with a simultaneous decrease in vertical leakage current, as compared to the reference GaN-based epi-structure using a thicker buffer thickness. This is ascribed to the better strain relaxation, as confirmed by X-Ray Diffraction data, and to a lower clustering of dislocations, as confirmed by Defect Selective Etching and Cathodoluminescence mappings. (ii) SL-based samples have significantly lower buffer trapping, as confirmed by substrate ramp measurements. (iii) Backgating transient analysis indicated that traps are located below the two-dimensional electron gas, and are related to CN defects. (iv) The signature of these traps is significantly reduced on devices with SL. This can be explained by the lower vertical leakage (filling of acceptors via electron injection) or by the slightly lower incorporation of C in the SL buffer, due to the slower growth process. SL-based buffers therefore represent a viable solution for the fabrication of high voltage GaN transistors on silicon substrate, and for the simultaneous reduction of trapping processes.

10.
Micromachines (Basel) ; 11(1)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963553

RESUMO

We investigated the origin of vertical leakage and breakdown in GaN-on-Si epitaxial structures. In order to understand the role of the nucleation layer, AlGaN buffer, and C-doped GaN, we designed a sequential growth experiment. Specifically, we analyzed three different structures grown on silicon substrates: AlN/Si, AlGaN/AlN/Si, C:GaN/AlGaN/AlN/Si. The results demonstrate that: (i) the AlN layer grown on silicon has a breakdown field of 3.25 MV/cm, which further decreases with temperature. This value is much lower than that of highly-crystalline AlN, and the difference can be ascribed to the high density of vertical leakage paths like V-pits or threading dislocations. (ii) the AlN/Si structures show negative charge trapping, due to the injection of electrons from silicon to deep traps in AlN. (iii) adding AlGaN on top of AlN significantly reduces the defect density, thus resulting in a more uniform sample-to-sample leakage. (iv) a substantial increase in breakdown voltage is obtained only in the C:GaN/AlGaN/AlN/Si structure, that allows it to reach VBD > 800 V. (v) remarkably, during a vertical I-V sweep, the C:GaN/AlGaN/AlN/Si stack shows evidence for positive charge trapping. Holes from C:GaN are trapped at the GaN/AlGaN interface, thus bringing a positive charge storage in the buffer. For the first time, the results summarized in this paper clarify the contribution of each buffer layer to vertical leakage and breakdown.

11.
Materials (Basel) ; 11(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154392

RESUMO

This paper investigates the reliability of blue-emitting phosphors for Near-UV (NUV) laser excitation. By means of a series of thermal stress experiments, and of stress under high levels of optical excitation, we have been able to identify the physical process responsible for the degradation of Eu2+-activated alkaline-earth halophosphate phosphors under typical and extreme operating conditions. In particular, for temperatures equal to or greater than 450 °C the material exhibited a time-dependent drop in the Photo-Luminescence (PL), which was attributed to the thermally induced ionization of the Eu2+ optically active centers. Several analytical techniques, including spatially and spectrally resolved PL, Electron Paramagnetic Resonance (EPR) and X-ray Photo-emission Spectroscopy (XPS) were used to support this hypothesis and to gain insight on the degradation process. By means of further tests, evidence of this degradation process was also found on samples stressed under a relatively low power density of 3 W/mm² at 405 nm. This indicated that the optically (and thermally) induced ionization of the optically active species is the most critical degradation process for this family of phosphorescent material. The operating limits of a second-generation Eu-doped halophosphate phosphor were also investigated by means of short-term stress under optical excitation. The experimental data showed that a threshold excitation intensity for continuous pumping exists. Above this threshold, decay of the steady-state PL performance and non-recoverable degradation of the material were found to take place. This behavior is a consequence of the extremely harsh excitation regime, mainly due to the thermal management capabilities of the substrate material employed for our experimental purposes rather than from intrinsic properties of the phosphors.

12.
Materials (Basel) ; 11(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29342114

RESUMO

The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications.

13.
Materials (Basel) ; 10(10)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019958

RESUMO

This paper presents an extensive analysis of the operating principles, theoretical background, advantages and limitations of laser-based lighting systems. In the first part of the paper we discuss the main advantages and issues of laser-based lighting, and present a comparison with conventional LED-lighting technology. In the second part of the paper, we present original experimental data on the stability and reliability of phosphor layers for laser lighting, based on high light-intensity and high-temperature degradation tests. In the third part of the paper (for the first time) we present a detailed comparison between three different solutions for laser lighting, based on (i) transmissive phosphor layers; (ii) a reflective/angled phosphor layer; and (iii) a parabolic reflector, by discussing the advantages and drawbacks of each approach. The results presented within this paper can be used as a guideline for the development of advanced lighting systems based on laser diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA