Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuroimmunomodulation ; 26(2): 59-66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30703773

RESUMO

BACKGROUND: Others and we have shown that T cells have an important role in hippocampal synaptic plasticity, including neurogenesis in the dentate gyrus, spinogenesis, and glutamatergic synaptic function in the CA of the hippocampus. Hippocampus plasticity is particularly involved in the brain effects of the enriched environment (EE), and interestingly CD4+ and CD8+ T cells play essential and differential roles in these effects. However, the precise mechanisms by which they act on the brain remain elusive. OBJECTIVES: We searched for a putative mechanism of action by which CD4+ T cells could influence brain plasticity and hypothesized that they could regulate protein transport at the level of the blood-CSF barrier in the choroid plexus. METHOD: We compared mice housed in EE and deprived of CD4+ T cells using a depleting antibody with a control group injected with the control isotype. We analyzed in the hippocampus the gene expression profiles using the Agilent system, and the expression of target proteins in plasma, CSF, and the choroid plexus using ELISA. RESULTS: We show that CD4+ T cells may influence EE-induced hippocampus plasticity via thyroid hormone signaling by regulating in the choroid plexus the expression of transthyretin, the major transporter of thyroxine (T4) to the brain parenchyma. CONCLUSIONS: Our study highlights the contribution of close interactions between the immune and neuroendocrine systems in brain plasticity and function.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Plexo Corióideo/metabolismo , Plasticidade Neuronal/fisiologia , Pré-Albumina/metabolismo , Tiroxina/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Abrigo para Animais , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico/fisiologia , Hormônios Tireóideos/metabolismo
2.
Brain Behav Immun ; 69: 235-254, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29175168

RESUMO

Enriched environment (EE) induces plasticity changes in the brain. Recently, CD4+ T cells have been shown to be involved in brain plasticity processes. Here, we show that CD8+ T cells are required for EE-induced brain plasticity in mice, as revealed by measurements of hippocampal volume, neurogenesis in the DG of the hippocampus, spinogenesis and glutamatergic synaptic function in the CA of the hippocampus. As a consequence, EE-induced behavioral benefits depend, at least in part, on CD8+ T cells. In addition, we show that spleen CD8+ T cells from mice housed in standard environment (SE) and EE have different properties in terms of 1) TNFα release after in vitro CD3/CD28 or PMA/Iono stimulation 2) in vitro proliferation properties 3) CD8+ CD44+ CD62Llow and CD62Lhi T cells repartition 4) transcriptomic signature as revealed by RNA sequencing. CD8+ T cells purified from the choroid plexus of SE and EE mice also exhibit different transcriptomic profiles as highlighted by single-cell mRNA sequencing. We show that CD8+ T cells are essential mediators of beneficial EE effects on brain plasticity and cognition. Additionally, we propose that EE differentially primes CD8+ T cells leading to behavioral improvement.


Assuntos
Comportamento Animal/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Meio Ambiente , Hipocampo/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Proliferação de Células/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Camundongos , Atividade Motora/fisiologia
3.
Nat Biotechnol ; 37(12): 1446-1451, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712773

RESUMO

Vagus nerve stimulation can ameliorate autoimmune diseases such as rheumatoid arthritis by modulation of the immune system. Its efficacy for the treatment of type 1 diabetes has not been explored, in part because the nerves projecting to the pancreatic lymph nodes (pLNs) in mice are unmapped. Here, we map the nerve projecting to the pancreas and pLNs in mice and use a minimally invasive surgical procedure to implant micro-cuff electrodes onto the nerve. Pancreatic nerve electrical stimulation (PNES) resulted in ß-adrenergic receptor-mediated-accumulation of B and T cells in pLNs and reduced production of pro-inflammatory cytokines following lipopolysaccharide stimulation. Autoreactive T cells showed reduced proliferation in pLNs of mice receiving PNES as compared to sham controls. In a spontaneous mouse model of autoimmune diabetes, PNES inhibited disease progression in diabetic mice.


Assuntos
Diabetes Mellitus Tipo 1 , Terapia por Estimulação Elétrica , Pâncreas , Animais , Linfócitos B/imunologia , Glicemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Feminino , Insulina/metabolismo , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Pâncreas/imunologia , Pâncreas/inervação , Pâncreas/metabolismo , Linfócitos T/imunologia
4.
Med Sci (Paris) ; 34(5): 417-423, 2018 May.
Artigo em Francês | MEDLINE | ID: mdl-29900844

RESUMO

Adiponectin (ApN) is a hormone produced by adipose tissue, yet the plasma level of ApN is decreased in overweight and obese people, as well as in people with diabetes. In the periphery, this decrease in circulating levels of ApN induces the establishment of a chronic low-grade inflammatory state and is involved in the development of insulin resistance and atheromas. Conversely, "favorable" living conditions, weight loss and regular physical exercise increase ApN blood concentration. Some forms of ApN can reach the brain parenchyma through the cerebrospinal fluid. In the brain, the increase in ApN exerts powerful antidepressant and anxiolytic effects, in particular by fighting against neuroinflammation.


Assuntos
Adiponectina/farmacologia , Anti-Inflamatórios/farmacologia , Antidepressivos/farmacologia , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Antidepressivos/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Humanos , Obesidade/etiologia , Obesidade/psicologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-29950983

RESUMO

Living in an enriched environment (EE) benefits health by acting synergistically on various biological systems including the immune and the central nervous systems. The dialog between the brain and the immune cells has recently gained interest and is thought to play a pivotal role in beneficial effects of EE. Recent studies show that T lymphocytes have an important role in hippocampal plasticity, learning, and memory, although the precise mechanisms by which they act on the brain remain elusive. Using a mouse model of EE, we show here that CD4+ T cells are essential for spinogenesis and glutamatergic synaptic function in the CA of the hippocampus. However, CD4+ lymphocytes do not influence EE-induced neurogenesis in the DG of the hippocampus, by contrast to what we previously demonstrated for CD8+ T cells. Importantly, CD4+ T cells located in the choroid plexus have a specific transcriptomic signature as a function of the living environment. Our study highlights the contribution of CD4+ T cells in the brain plasticity and function.

6.
Front Cell Neurosci ; 11: 352, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184485

RESUMO

We recently reported that increased levels of Adiponectin (ApN) in the brain led to microglia phenotype and activation state regulation, thus reducing both global brain inflammation and depressive-like behaviors in mice. Apart from this, little is known on ApN molecular effects on microglia, although these cells are crucial in both physiological and pathological processes. Here we fill this gap by studying the effects and targets of ApN toward neuroinflammation. Our findings suggest that ApN deficiency in mice leads to a higher sensitivity of mice to neuroinflammation that is due to enhanced microglia responsiveness to a pro-inflammatory challenge. Moreover, we show that globular ApN (gApN) exerts direct in vivo anti-inflammatory actions on microglia by reducing IL-1ß, IL-6, and TNFα synthesis. In vitro, gApN anti-inflammatory properties are confirmed in brain-sorted microglia, primary cultured and microglia cell line (BV2), but are not observed on astrocytes. Our results also show that gApN blocks LPS-induced nitrosative and oxidative stress in microglia. Finally, we demonstrate for the first time that these anti-inflammatory and anti-oxidant actions of gApN on microglia are mediated through an AdipoR1/NF-κB signaling pathway.

7.
Neuropharmacology ; 110(Pt A): 69-81, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27060411

RESUMO

Thyrotropin Releasing Hormone (TRH) is a tripeptide that induces the release of Thyroid Stimulating Hormone (TSH) in the blood. Besides its role in the thyroid system, TRH has been shown to regulate several neuronal systems in the brain however its role in hippocampus remains controversial. Using electrophysiological recordings in acute mouse brain slices, we show that TRH depresses glutamate responses at the CA3-CA1 synapse through an action on NMDA receptors, which, as a consequence, decreases the ability of the synapse to establish a long term potentiation (LTP). TRH also induces a late increase in AMPA/kainate responses. Together, these results suggest that TRH plays an important role in the modulation of hippocampal neuronal activities, and they contribute to a better understanding of the mechanisms by which TRH impacts synaptic function underlying emotional states, learning and memory processes.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/fisiologia , Neurônios/fisiologia , Hormônio Liberador de Tireotropina/farmacologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia
8.
Brain Struct Funct ; 220(6): 3435-48, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25096287

RESUMO

Enriched environment (EE) is characterized by improved conditions for enhanced exploration, cognitive activity, social interaction and physical exercise. It has been shown that EE positively regulates the remodeling of neural circuits, memory consolidation, long-term changes in synaptic strength and neurogenesis. However, the fine mechanisms by which environment shapes the brain at different postnatal developmental stages and the duration required to induce such changes are still a matter of debate. In EE, large groups of mice were housed in bigger cages and were given toys, nesting materials and other equipment that promote physical activity to provide a stimulating environment. Weaned mice were housed in EE for 4, 6 or 8 weeks and compared with matched control mice that were raised in a standard environment. To investigate the differential effects of EE on immature and mature brains, we also housed young adult mice (8 weeks old) for 4 weeks in EE. We studied the influence of onset and duration of EE housing on the structure and function of hippocampal neurons. We found that: (1) EE enhances neurogenesis in juvenile, but not young adult mice; (2) EE increases the number of synaptic contacts at every stage; (3) long-term potentiation (LTP) and spontaneous and miniature activity at the glutamatergic synapses are affected differently by EE depending on its onset and duration. Our study provides an integrative view of the role of EE during postnatal development in various mechanisms of plasticity in the hippocampus including neurogenesis, synaptic morphology and electrophysiological parameters of synaptic connectivity. This work provides an explanation for discrepancies found in the literature about the effects of EE on LTP and emphasizes the importance of environment on hippocampal plasticity.


Assuntos
Meio Ambiente , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Potenciação de Longa Duração , Células Piramidais/fisiologia , Animais , Espinhas Dendríticas , Potenciais Pós-Sinápticos Excitadores , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA