Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 242(3): 916-934, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482544

RESUMO

Deserts represent key carbon reservoirs, yet as these systems are threatened this has implications for biodiversity and climate change. This review focuses on how these changes affect desert ecosystems, particularly plant root systems and their impact on carbon and mineral nutrient stocks. Desert plants have diverse root architectures shaped by water acquisition strategies, affecting plant biomass and overall carbon and nutrient stocks. Climate change can disrupt desert plant communities, with droughts impacting both shallow and deep-rooted plants as groundwater levels fluctuate. Vegetation management practices, like grazing, significantly influence plant communities, soil composition, root microorganisms, biomass, and nutrient stocks. Shallow-rooted plants are particularly susceptible to climate change and human interference. To safeguard desert ecosystems, understanding root architecture and deep soil layers is crucial. Implementing strategic management practices such as reducing grazing pressure, maintaining moderate harvesting levels, and adopting moderate fertilization can help preserve plant-soil systems. Employing socio-ecological approaches for community restoration enhances carbon and nutrient retention, limits desert expansion, and reduces CO2 emissions. This review underscores the importance of investigating belowground plant processes and their role in shaping desert landscapes, emphasizing the urgent need for a comprehensive understanding of desert ecosystems.


Assuntos
Carbono , Ecossistema , Humanos , Biodiversidade , Plantas , Solo , Clima Desértico , Raízes de Plantas
2.
Glob Chang Biol ; 30(4): e17292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634556

RESUMO

Drylands, comprising semi-arid, arid, and hyperarid regions, cover approximately 41% of the Earth's land surface and have expanded considerably in recent decades. Even under more optimistic scenarios, such as limiting global temperature rise to 1.5°C by 2100, semi-arid lands may increase by up to 38%. This study provides an overview of the state-of-the-art regarding changing aridity in arid regions, with a specific focus on its effects on the accumulation and availability of carbon (C), nitrogen (N), and phosphorus (P) in plant-soil systems. Additionally, we summarized the impacts of rising aridity on biodiversity, service provisioning, and feedback effects on climate change across scales. The expansion of arid ecosystems is linked to a decline in C and nutrient stocks, plant community biomass and diversity, thereby diminishing the capacity for recovery and maintaining adequate water-use efficiency by plants and microbes. Prolonged drought led to a -3.3% reduction in soil organic carbon (SOC) content (based on 148 drought-manipulation studies), a -8.7% decrease in plant litter input, a -13.0% decline in absolute litter decomposition, and a -5.7% decrease in litter decomposition rate. Moreover, a substantial positive feedback loop with global warming exists, primarily due to increased albedo. The loss of critical ecosystem services, including food production capacity and water resources, poses a severe challenge to the inhabitants of these regions. Increased aridity reduces SOC, nutrient, and water content. Aridity expansion and intensification exacerbate socio-economic disparities between economically rich and least developed countries, with significant opportunities for improvement through substantial investments in infrastructure and technology. By 2100, half the world's landmass may become dryland, characterized by severe conditions marked by limited C, N, and P resources, water scarcity, and substantial loss of native species biodiversity. These conditions pose formidable challenges for maintaining essential services, impacting human well-being and raising complex global and regional socio-political challenges.


Assuntos
Biodiversidade , Ecossistema , Humanos , Carbono , Solo/química , Temperatura , Plantas , Água
3.
J Environ Manage ; 354: 120217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340666

RESUMO

The underground community of soil organisms, known as soil biota, plays a critical role in terrestrial ecosystems. Different ecosystems exhibit varied responses of soil organisms to soil physical and chemical properties (SPCPs). However, our understanding of how soil biota react to different soil depths in naturally established population of salinity tolerant Tamarix ramosissima in desert ecosystems, remains limited. To address this, we employed High-Throughput Illumina HiSeq Sequencing to examine the population dynamics of soil bacteria, fungi, archaea, protists, and metazoa at six different soil depths (0-100 cm) in the naturally occurring T. ramosissima dominant zone within the Taklimakan desert of China. Our observations reveal that the alpha diversity of bacteria, fungi, metazoa, and protists displayed a linear decrease with the increase of soil depth, whereas archaea exhibited an inverse pattern. The beta diversity of soil biota, particularly metazoa, bacteria, and protists, demonstrated noteworthy associations with soil depths through Non-Metric Dimensional Scaling analysis. Among the most abundant classes of soil organisms, we observed Actinobacteria, Sordariomycetes, Halobacteria, Spirotrichea, and Nematoda for bacteria, fungi, archaea, protists, and metazoa, respectively. Additionally, we identified associations between the vertical distribution of dominant biotic communities and SPCPs. Bacterial changes were mainly influenced by total potassium, available phosphorus (AP), and soil water content (SWC), while fungi were impacted by nitrate (NO3-) and available potassium (AK). Archaea showed correlations with total carbon (TC) and AK thus suggesting their role in methanogenesis and methane oxidation, protists with AP and SWC, and metazoa with AP and pH. These correlations underscore potential connections to nutrient cycling and the production and consumption of greenhouse gases (GhGs). This insight establishes a solid foundation for devising strategies to mitigate nutrient cycling and GHG emissions in desert soils, thereby playing a pivotal role in the advancement of comprehensive approaches to sustainable desert ecosystem management.


Assuntos
Ecossistema , Tamaricaceae , Solo/química , Conservação dos Recursos Naturais , Archaea/genética , Bactérias , Biota , Nutrientes , Fungos , Potássio , Microbiologia do Solo
4.
J Environ Manage ; 357: 120807, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569266

RESUMO

Vegetation restoration in deserts is challenging due to these ecosystems' inherent fragility and harsh environmental conditions. One approach for active restoration involves planting native species, which can accelerate the recovery of ecosystem functions. To ensure the effectiveness of this process, carefully selecting species for planting is crucial. Generally, it is expected that a more diverse mix of species in the plantation will lead to the recovery of a greater number of ecosystem functions, especially when the selected species have complementary niche traits that facilitate maximum cooperation and minimize competition among them. In this study, we evaluated the planting of two native species from the hyper-desert of Taklamakan, China, which exhibit marked morpho-physiological differences: a phreatophytic legume (Alhagi sparsifolia) and a halophytic non-legume (Karelinia caspia). These species were grown in both monoculture and intercrop communities. Monoculture of the legume resulted in the highest biomass accumulation. Intercropping improved several ecosystem functions in the 50 cm-upper soil, particularly those related to phosphorus (P), carbon (C), and sulfur (S) concentrations, as well as soil enzyme activities. However, it also increased soil sodium (Na+) concentration and pH. Halophyte monocultures enhanced ecological functions associated with nitrogen concentrations in the upper soil and with P, S, C, and cation concentrations (K+, Ca2+, Mg2+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+), along with enzyme activities in the deep soil. It also maximized Na+ accumulation in plant biomass. In summary, we recommend legume monoculture when the primary goal is to optimize biomass accumulation. Conversely, halophyte monoculture is advisable when the objective is to extract sodium from the soil or enhance ecosystem functions in the deep soil. Intercropping the two species is recommended to maximize the ecosystem functions of the upper soil, provided there is no salinization risk. When planning restoration efforts in desert regions, it is essential to understand the impact of each species on ecosystem function and how complementary species behave when intercropped. However, these interactions are likely species- and system-specific, highlighting the need for more work to optimize solutions for different arid ecosystems.


Assuntos
Ecossistema , Fabaceae , Biomassa , Solo , Verduras , Plantas Tolerantes a Sal , Sódio , China
5.
BMC Plant Biol ; 23(1): 188, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032339

RESUMO

BACKGROUND: Phosphorus (P) deficiency in desert ecosystems is widespread. Generally, desert species may allocate an enormous proportion of photosynthetic carbon to their root systems to adjust their P-acquisition strategies. However, root P-acquisition strategies of deep-rooted desert species and the coordination response of root traits at different growth stages to differing soil P availability remains unclear. In this study, a two-year pot experiment was performed with four soil P-supply treatments (0, 0.9, 2.8, and 4.7 mg P kg-1 y-1 for the control, low-, intermediate-, and high-P supply, respectively). Root morphological and physiological traits of one- and two-year-old Alhagi sparsifolia seedlings were measured. RESULTS: For two-year-old seedlings, control or low-P supply significantly increased their leaf Mn concentration, coarse and fine roots' specific root length (SRL), specific root surface area (SRSA), and acid phosphatase activity (APase), but SRL and SRSA of one-year-old seedlings were higher under intermediate-P supply treatment. Root morphological traits were closely correlated with root APase activity and leaf Mn concentration. One-year-old seedlings had higher root APase activity, leaf Mn concentration, and root tissue density (RTD), but lower SRL and SRSA. Two-year-old seedlings had higher root APase activity, leaf Mn concentration, SRL and SRSA, but a lower RTD. Root APase activity was significantly positively correlated with the leaf Mn concentration, regardless of coarse or fine roots. Furthermore, root P concentrations of coarse and fine roots were driven by different root traits, with root biomass and carboxylates secretion particularly crucial root traits for the root P-acquisition of one- and two-year-old seedlings. CONCLUSIONS: Variation of root traits at different growth stages are coordinated with root P concentrations, indicating a trade-off between root traits and P-acquisition strategies. Alhagi sparsifolia developed two P-activation strategies, increasing P-mobilizing phosphatase activity and carboxylates secretion, to acclimate P-impoverished in soil. The adaptive variation of root traits at different growth stages and diversified P-activation strategies are conducive to maintaining the desert ecosystem productivity.


Assuntos
Ecossistema , Fabaceae , Fósforo , Solo , Raízes de Plantas , Plantas , Plântula , Ácidos Carboxílicos
6.
Physiol Plant ; 175(6): e14105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148234

RESUMO

Traits of leaves and fine roots are expected to predict the responses and adaptation of plants to their environments. Whether and how fine-root traits (FRTs) are associated with the allocation of foliar phosphorus (P) fractions of desert species in water- and P-poor environments, however, remains unclear. We exposed seedlings of Alhagi sparsifolia Shap. (hereafter Alhagi) treated with two water and four P-supply levels for three years in open-air pot experiments and measured the concentrations of foliar P fractions, foliar traits, and FRTs. The allocation proportion of foliar nucleic acid-P and acid phosphatase (APase) activity of fine roots were significantly higher by 45.94 and 53.3% in drought and no-P treatments relative to well-watered and high-P treatments, whereas foliar metabolic-P and structural-P were significantly lower by 3.70 and 5.26%. Allocation proportions of foliar structural-P and residual-P were positively correlated with fine-root P (FRP) concentration, but nucleic acid-P concentration was negatively correlated with FRP concentration. A tradeoff was found between the allocation proportion to all foliar P fractions relative to the FRP concentration, fine-root APase activity, and amounts of carboxylates, followed by fine-root morphological traits. The requirement for a link between the aboveground and underground tissues of Alhagi was generally higher in the drought than the well-watered treatment. Altering FRTs and the allocation of P to foliar nucleic acid-P were two coupled strategies of Alhagi under conditions of drought and/or low-P. These results advance our understanding of the strategies for allocating foliar P by mediating FRTs in drought and P-poor environments.


Assuntos
Fabaceae , Ácidos Nucleicos , Água , Fósforo , Raízes de Plantas/fisiologia , Fenótipo , Fabaceae/fisiologia
7.
Environ Res ; 229: 115966, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100368

RESUMO

BACKGROUND: Environmental stresses pose a significant threat to plant growth and ecosystem productivity, particularly in arid lands that are more susceptible to climate change. Strigolactones (SLs), carotenoid-derived plant hormones, have emerged as a potential tool for mitigating environmental stresses. METHODS: This review aimed to gather information on SLs' role in enhancing plant tolerance to ecological stresses and their possible use in improving the resistance mechanisms of arid land plant species to intense aridity in the face of climate change. RESULTS: Roots exude SLs under different environmental stresses, including macronutrient deficiency, especially phosphorus (P), which facilitates a symbiotic association with arbuscular mycorrhiza fungi (AMF). SLs, in association with AMF, improve root system architecture, nutrient acquisition, water uptake, stomatal conductance, antioxidant mechanisms, morphological traits, and overall stress tolerance in plants. Transcriptomic analysis revealed that SL-mediated acclimatization to abiotic stresses involves multiple hormonal pathways, including abscisic acid (ABA), cytokinins (CK), gibberellic acid (GA), and auxin. However, most of the experiments have been conducted on crops, and little attention has been paid to the dominant vegetation in arid lands that plays a crucial role in reducing soil erosion, desertification, and land degradation. All the environmental gradients (nutrient starvation, drought, salinity, and temperature) that trigger SL biosynthesis/exudation prevail in arid regions. The above-mentioned functions of SLs can potentially be used to improve vegetation restoration and sustainable agriculture. CONCLUSIONS: Present review concluded that knowledge on SL-mediated tolerance in plants is developed, but still in-depth research is needed on downstream signaling components in plants, SL molecular mechanisms and physiological interactions, efficient methods of synthetic SLs production, and their effective application in field conditions. This review also invites researchers to explore the possible application of SLs in improving the survival rate of indigenous vegetation in arid lands, which can potentially help combat land degradation problems.


Assuntos
Ecossistema , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Lactonas/metabolismo , Plantas , Estresse Fisiológico
8.
BMC Plant Biol ; 22(1): 453, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131250

RESUMO

BACKGROUND: Alhagi sparsifolia (Camelthorn) is a leguminous shrub species that dominates the Taklimakan desert's salty, hyperarid, and infertile landscapes in northwest China. Although this plant can colonize and spread in very saline soils, how it adapts to saline stress in the seedling stage remains unclear so a pot-based experiment was carried out to evaluate the effects of four different saline stress levels (0, 50, 150, and 300 mM) on the morphological and physio-biochemical responses in A. sparsifolia seedlings. RESULTS: Our results revealed that N-fixing A. sparsifolia has a variety of physio-biochemical anti-saline stress acclimations, including osmotic adjustments, enzymatic mechanisms, and the allocation of metabolic resources. Shoot-root growth and chlorophyll pigments significantly decreased under intermediate and high saline stress. Additionally, increasing levels of saline stress significantly increased Na+ but decreased K+ concentrations in roots and leaves, resulting in a decreased K+/Na+ ratio and leaves accumulated more Na + and K + ions than roots, highlighting their ability to increase cellular osmolarity, favouring water fluxes from soil to leaves. Salt-induced higher lipid peroxidation significantly triggered antioxidant enzymes, both for mass-scavenging (catalase) and cytosolic fine-regulation (superoxide dismutase and peroxidase) of H2O2. Nitrate reductase and glutamine synthetase/glutamate synthase also increased at low and intermediate saline stress levels but decreased under higher stress levels. Soluble proteins and proline rose at all salt levels, whereas soluble sugars increased only at low and medium stress. The results show that when under low-to-intermediate saline stress, seedlings invest more energy in osmotic adjustments but shift their investment towards antioxidant defense mechanisms under high levels of saline stress. CONCLUSIONS: Overall, our results suggest that A. sparsifolia seedlings tolerate low, intermediate, and high salt stress by promoting high antioxidant mechanisms, osmolytes accumulations, and the maintenance of mineral N assimilation. However, a gradual decline in growth with increasing salt levels could be attributed to the diversion of energy from growth to maintain salinity homeostasis and anti-stress oxidative mechanisms.


Assuntos
Antioxidantes , Fabaceae , Antioxidantes/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Fabaceae/metabolismo , Glutamato Sintase/metabolismo , Glutamato Sintase/farmacologia , Glutamato-Amônia Ligase/metabolismo , Peróxido de Hidrogênio/metabolismo , Íons/metabolismo , Nitrogênio/metabolismo , Prolina/metabolismo , Salinidade , Plântula/metabolismo , Solo , Açúcares/metabolismo , Superóxido Dismutase/metabolismo , Água/metabolismo
9.
Environ Res ; 215(Pt 2): 114282, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36122702

RESUMO

Drought is common in most regions of the world, and it has a significant impact on plant growth and development. Plants, on the other hand, have evolved their own defense systems to deal with the extreme weather. The reprogramming of gene expression by microRNAs (miRNAs) is one of these defense mechanisms. miRNAs are short noncoding RNAs that have emerged as key post-transcriptional gene regulators in a variety of species. Drought stress modulates the expression of certain miRNAs that are functionally conserved across plant species. These characteristics imply that miRNA-based genetic changes might improve drought resistance in plants. This study highlights current knowledge of plant miRNA biogenesis, regulatory mechanisms and their role in drought stress responses. miRNAs functions and their adaptations by plants during drought stress has also been explained that can be exploited to promote drought-resistance among economically important crops.


Assuntos
Secas , MicroRNAs , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Estresse Fisiológico
10.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269700

RESUMO

To complete their life cycles, plants require several minerals that are found in soil. Plant growth and development can be affected by nutrient shortages or high nutrient availability. Several adaptations and evolutionary changes have enabled plants to cope with inappropriate growth conditions and low or high nutrient levels. MicroRNAs (miRNAs) have been recognized for transcript cleavage and translational reduction, and can be used for post-transcriptional regulation. Aside from regulating plant growth and development, miRNAs play a crucial role in regulating plant's adaptations to adverse environmental conditions. Additionally, miRNAs are involved in plants' sensory functions, nutrient uptake, long-distance root transport, and physiological functions related to nutrients. It may be possible to develop crops that can be cultivated in soils that are either deficient in nutrients or have extreme nutrient supplies by understanding how plant miRNAs are associated with nutrient stress. In this review, an overview is presented regarding recent advances in the understanding of plants' responses to nitrogen, phosphorus, potassium, sulfur, copper, iron, boron, magnesium, manganese, zinc, and calcium deficiencies via miRNA regulation. We conclude with future research directions emphasizing the modification of crops for improving future food security.


Assuntos
MicroRNAs , Produtos Agrícolas/genética , MicroRNAs/genética , Nutrientes , Fósforo , Desenvolvimento Vegetal , Raízes de Plantas/genética , Solo , Estresse Fisiológico
11.
Environ Monit Assess ; 194(6): 394, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486217

RESUMO

Landscape fragmentation is considered a serious threat to eco-environmental integrity and socioeconomic development. Although many studies have focused on landscape fragmentation resulting from agricultural production and urbanization, landscape fragmentation from the aspects of patterns, driving forces, and the policy perspective of ecosystems has rarely been investigated. Oases, as a unique landscape, face severe fragmentation in arid and semiarid regions. This study applied a combination of approaches, including remote sensing image interpretations, landscape fragmentation metrics, and community surveys, to analyze patterns and their driving forces, as well as the policy implications for future land consolidation, in the Hotan oasis of Northwest China from the space and time perspectives. Results show that the frequent occurrence of summer flood events changes the patch number, density, size, and splitting degree of oasis-desert ecotone vegetation. The socioeconomic factors including total population and irrigation area are more important driving forces on oasis landscape fragmentation, compared with natural factors such as temperature and precipitation. Rural expansion, road and canal system developments caused by population growth, and the rising number of households increase oasis landscape fragmentation. Rapid economic development, such as agricultural expansion and urbanization, has imposed the intensification of landscape fragmentation. Fragmentation reaches peak when agricultural development makes up 40-50% of study area. Rural residential reconstruction and farmland transfer policies facilitate the intensive utilization of land toward oasis fragmentation solutions, but many factors, such as landholders' household characteristics and living conditions, are partly responsible for the challenges in land consolidation. This study also demonstrates that intense human activities pose a great threat for land consolidation and sustainable development of oasis landscape.


Assuntos
Ecossistema , Monitoramento Ambiental , Agricultura , Monitoramento Ambiental/métodos , Humanos , Políticas , Urbanização
12.
Glob Chang Biol ; 27(14): 3244-3256, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33931928

RESUMO

Drip irrigation is a useful practice to enhance water and fertilizer nitrogen (N) use efficiency. However, the use of drip irrigation to mitigate nitrous oxide (N2 O) emissions in agricultural systems globally is uncertain. Here, we performed a global meta-analysis of 485 field measurements of N2 O emissions from 74 peer-reviewed publications prior to March 2021, to quantify the fertilizer-induced N2 O emission factor (EF) of drip irrigation and examine the influencing factors of climate, crop, soil properties, and source and rate of fertilizer N application. The results showed that drip irrigation reduced (p < 0.05) N2 O emissions by 32% and 46% compared to furrow and sprinkler irrigation systems, respectively. The overall average EF with drip irrigation was 0.35%, being two-thirds lower than the IPCC Tier I default value of 1% (kg N2 O-N/kg added fertilizer N). The EF was not significantly affected by climate, crop, soil texture, soil organic carbon content, and pH. The EF was also not significantly (p > 0.05) affected by synthetic N fertilizer source despite a lower numerical value with enhanced efficiency than conventional fertilizers. The EF increased significantly (p < 0.001) with N addition rate in a binomial distribution. Using the IPCC default EF overestimated N2 O emissions inventories for drip-irrigated cropping systems by 7614 and 13,091 Mg per year for China and the globe, respectively. These results indicate that drip irrigation should be recommended as an essential N2 O mitigation strategy for irrigated crop production.


Assuntos
Óxido Nitroso , Solo , Agricultura , Carbono , China , Fertilizantes/análise , Nitrogênio , Óxido Nitroso/análise
13.
Physiol Plant ; 173(4): 2307-2322, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34625966

RESUMO

Plants are subjected to salt and drought stresses concurrently but our knowledge about the effects of combined stress on plants is limited, especially on halophytes. We aim to study if some diverse drought and salt tolerance traits in halophyte may explain their tolerance to salinity and drought stresses, individual and in combination, and identify key traits that influence growth under such stress conditions. Here, the halophyte Halogeton glomeratus was grown under control, single or combinations of 60 days drought and salt treatments, and morphophysiological responses were tested. Our results showed that drought, salinity, and combination of these two stressors decreased plant growth (shoot height, root length, and biomass), leaf photosynthetic pigments content (chlorophyll a, b, a + b and carotenoids), gas exchange parameters (Net photosynthesis rate [PN ], transpiration rate [E], stomatal conductance [gs ]), and water potential (ψw ), and the decreases were more prominent under combined drought and salinity treatment compared with these two stressors individually performed. Similarly, combined drought and salinity treatment induced more severe oxidative stress as indicated by more hydrogen peroxide (H2 O2 ) and malondialdehyde (MDA) accumulated. Nevertheless, H. glomeratus is equipped with specific mechanisms to protect itself against drought and salt stresses, including upregulation of superoxide dismutases (SOD; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) activities and accumulation of osmoprotectants (Na+ , Cl- , and soluble sugar). Our results indicated that photosynthetic pigments content, gas exchange parameters, water potential, APX activity, CAT activity, soluble sugar, H2 O2 , and MDA are valuable screening criteria for drought and salt, alone or combined, and provide the tolerant assessment of H. glomeratus.


Assuntos
Chenopodiaceae , Secas , Antioxidantes , Clorofila A , Salinidade , Plantas Tolerantes a Sal , Estresse Fisiológico
14.
J Environ Manage ; 263: 110373, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883475

RESUMO

Long-term data regarding soil properties and crop growth are powerful resources substantially contributing to our knowledge of soil-forming processes of reclaimed sandy desertification land. Generalized ecological principles derived from long-term observations that help to maintain or improve soil quality and productivity is critical for guiding field management practices while suitable for newly reclaimed sandy desertification land still need to be evaluated. Here, a 14-yr old experiment showed that soil quality index (SQI) had an "increase-decline-recovery" tendency in irrigation and fertilizer addition desertification lands while it remained at constantly low levels in desertification land with only irrigation. Stably decent yield and net incomes were obtained after 3-4 years' consecutive irrigation and fertilizer addition management. Correlation between crop productivity and SQI followed a saturation characteristic curve with threshold at 0.5, corresponding to soil organic carbon (SOC) ~5.0 g kg-1, below which crop productivity was linearly declined. 60% of observed inter-annual variations in SQI were explained by quantity of leaf litter, which was three times higher than explanatory power of root residue. No substantial changes occurred in soil mechanical components while the soil microbial biomass carbon, water-stable aggregate and heavy carbon pool in SOC were significantly improved by 2-9 folds in reclaimed desertification lands. Results revealed that increased biomass production with abundant residue retention is crucial for ameliorating soil quality, stabilizing high yield and economic gains, supporting the "High Biomass Cropping System" ecological hypothesis. Ecological limitations and opportunities to sustainable utilization of sandy desertification land were discussed.


Assuntos
Carbono , Solo , Biomassa , Conservação dos Recursos Naturais , Areia
15.
New Phytol ; 211(1): 103-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26856386

RESUMO

The terminal branch orders of plant root systems have been proposed as short-lived 'ephemeral' modules specialized for resource absorption. The occurrence of ephemeral root modules has so far only been reported for a temperate tree species and it is unclear if the concept also applies to other woody (shrub, tree) and herb species. Fine roots of 12 perennial dicotyledonous herb, shrub and tree species were monitored for two growing seasons using a branch-order classification, sequential sampling and rhizotrons in the Taklamakan desert. Two root modules existed in all three plant functional groups. Among the first five branch orders, the first two (perennial herbs, shrubs) or three (trees) root orders were ephemeral and had a primary anatomical structure, high nitrogen (N) concentrations, high respiration rates and very short life spans of 1-4 months, whereas the last two branch orders in all functional groups were perennial, with thicker diameters, no or collapsed cortex, distinct secondary growth, low N concentrations, low respiration rates, but much longer life spans. Ephemeral, short-lived root modules and long-lived, persistent root modules seem to be a general feature across many plant functional groups and could represent a basic root system design.


Assuntos
Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Plantas/anatomia & histologia , China , Clima Desértico , Ecossistema , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Morus/anatomia & histologia , Morus/fisiologia , Nitrogênio/metabolismo , Populus/anatomia & histologia , Populus/fisiologia , Fatores de Tempo , Árvores
16.
Environ Monit Assess ; 187(11): 699, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26497559

RESUMO

In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods.


Assuntos
Irrigação Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura , China , Ecossistema , Monitoramento Ambiental , Transpiração Vegetal , Rios , Estações do Ano , Solo , Água
17.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1187-1195, 2024 May.
Artigo em Zh | MEDLINE | ID: mdl-38886416

RESUMO

Populus euphratica is an important tree species in the arid regions of Northwest China, which is sensitive to climate changes. Climate of the Northwest China is changing to be "warm and humid", but how it would affect the regional forest growth is not clear. In this study, the radial growth response of P. euphratica to major climatic factors and their temporal changes during 1984-2021 were analyzed by using dendrochronology method in the desert oasis ecotone of Cele in the southern Tarim basin. The results showed that tree-ring width index of P. euphratica had a significant negative correlation with temperature in September of the previous year, and in February and May of current year, had significant positive correlation with precipitation in September of previous year and March and May of current year, and had significant positive correlations with SPEI in February and May of current year. The relationships between tree-ring width index and combined month climatic factors were more obvious. The results of moving correlation analysis showed that the correlation between tree-ring width index and temperature in the growing season tended to be strengthened in recent years, while the correlation between tree-ring width index and precipitation, SPEI tended to be declined or remain stable. The variations of the relationships between tree-ring width index and combined month climatic factors were more obvious compared that with single month. Current regional climate is conducive to the growth and development, as well as the improvement of ecological shelter function of P. euphratica forest in the desert oasis ecotone of Cele.


Assuntos
Mudança Climática , Clima Desértico , Ecossistema , Populus , Populus/crescimento & desenvolvimento , China , Temperatura
18.
Front Plant Sci ; 15: 1296641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711612

RESUMO

Introduction: Plastic film mulching (PFM) and deficit irrigation (DI) are vital water-saving approaches in arid agriculture. Cyperus esculentus is a significant crop in dry zones. However, scant data exists on the impacts of these water-saving methods on C. esculentus yield and quality. Method: Using randomized block experiment design. Three irrigation strategies were tested: CK (standard irrigation), RW20 (20% water reduction), and RW40 (40% water reduction). Mulchin treatments included film mulching (FM) and no film mulching (NFM). Results: Results revealed substantial effects of film mulching and drip irrigation on soil nutrients and physical properties, with minor influence on grass, root, and tuber stoichiometry. PF treatment, DI treatments, and their interaction significantly affected C. esculentus forage and tuber yields. Initially, grass and tuber yields increased and then decreased with reduced irrigation. The highest yields were under RW20 (3716.31 and 4758.19 kg/ha). FM increased grass and tuber yield by 17.99% and 8.46%, respectively, over NFM. The water reduction augmented the biomass distribuiton of the leaf and root, while reducing the tuber biomass in NFM. FM significantely impacted grass ether extract content, while reduced water influenced grass and tuber crude protein and tuber ether extract content. Mild water stress increased ether extract, crude protein, and soluble matter in grass and tubers, while excessive RW decreased them. Conclusion: Integrating soil traits, nutrients, yield, and quality, findings indicate C. esculentus yield and quality primarily hinge on soil water content, pond hydrogenase, and electrical conductivity. Based on this results, the recommended strategy is to reduce irrigation by 20% for cultivating C. esculentus in this area.

19.
Front Microbiol ; 15: 1361756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591034

RESUMO

Phyllosphere microbes residing on plant leaf surfaces for maintaining plant health have gained increasing recognition. However, in desert ecosystems, knowledge about the variety, composition, and coexistence patterns of microbial communities in the phyllosphere remains limited. This study, conducted across three basins (Turpan-TLF, Tarim-CL, and Dzungaria-MSW) and three seasons (spring, summer, and autumn) in Xinjiang, China, aimed to explore the diversity and composition of microbial communities in the phyllosphere, encompassing both bacteria and fungi in Alhagi sparsifolia. We also investigated the co-occurrence patterns, influencing factors, and underlying mechanisms driving these dynamics. Results indicate that phyllosphere bacteria exhibited lower diversity indices (ACE, Shannon, Simpson, Fisher phylogenetic diversity, and Richness) in spring compared to summer and autumn, while the Goods Coverage Index (GCI) was higher in spring. Conversely, diversity indices and GCI of phyllosphere fungi showed an opposite trend. Interestingly, the lowest level of multi-functionality and niche width in phyllosphere bacteria occurred in spring, while the highest level was observed in phyllosphere fungi. Furthermore, the study revealed that no significant differences in multi-functionality were found among the regions (CL, MSW, and TLF). Network analysis highlighted that during spring, phyllosphere bacteria exhibited the lowest number of nodes, edges, and average degree, while phyllosphere fungi had the highest. Surprisingly, the multi-functionality of both phyllosphere bacteria and fungi showed no significant correlation with climatic and environmental factors but displayed a significant association with the morphological characteristics and physicochemical properties of leaves. Structural Equation Model indicated that the morphological characteristics of leaves significantly influenced the multi-functionality of phyllosphere bacteria and fungi. However, the indirect and total effects of climate on multi-functionality were greater than the effects of physicochemical properties and morphological characteristics of leaves. These findings offer new insights into leaf phyllosphere microbial community structure, laying a theoretical foundation for vegetation restoration and rational plant resource utilization in desert ecosystems.

20.
Sci Total Environ ; 918: 170399, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38296095

RESUMO

Although snow cover is a major factor affecting vegetation in alpine regions, it is rarely introduced into ecological niche models in alpine regions. Snow phenology over the Tibetan Plateau (TP) was estimated using a daily passive microwave snow depth dataset, and future datasets of snow depth and snow phenology were projected based on their sensitivity to temperature and precipitation. Furthermore, the potential habitats of five alpine vegetation types on the TP were predicted under two future climate scenarios (SSP245 and SSP585) by using a model with incorporated snow variables, and the driving factors of habitat change were analyzed. The results showed that the inclusion of snow variables improved the prediction accuracy of MaxEnt model, particularly in alpine meadow habitats. By the end of the 21st century, the potential habitats of steppes, meadows, shrubs, deserts, and coniferous forests on the TP will migrate to higher latitudes and altitudes, in which the potential habitats of alpine desert will recede (replaced by alpine steppe), and the potential habitats of other four vegetation types will expand. The random forest importance analysis showed that the recession of potential habitat was mainly driven by the increase in average annual temperature, and the expansion of potential habitat was mainly driven by the increase in precipitation. With the gradual increase in temperature and precipitation in the future, the snow depth and snow cover duration days will decrease, which may further lead to the transition of vegetation types from cold-adapted to warm-adapted on the TP. Our study highlights both that the prediction accuracy of alpine vegetation was improved by incorporating snow variables into the species distribution model, and that a changing climate will likely have a powerful influence on the distribution of alpine vegetation across the TP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA