Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 42(4): 1201-1218, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37540301

RESUMO

Some relevant emerging properties of intelligent systems are "adaptation to a changing environment," "reaction to unexpected situations," "capacity of problem solving," and "ability to communicate." Single cells have remarkable abilities to adapt, make adequate context-dependent decision, take constructive actions, and communicate, thus theoretically meeting all the above-mentioned requirements. From a biological point of view, cancer can be viewed as an invasive species, composed of cells that move from primary to distant sites, being continuously exposed to changes in the environmental conditions. Blood represents the first hostile habitat that a cancer cell encounters once detached from the primary site, so that cancer cells must rapidly carry out multiple adaptation strategies to survive. The aim of this review was to deepen the adaptation mechanisms of cancer cells in the blood microenvironment, particularly referring to four adaptation strategies typical of animal species (phenotypic adaptation, metabolic adaptation, niche adaptation, and collective adaptation), which together define the broad concept of biological intelligence. We provided evidence that the required adaptations (either structural, metabolic, and related to metastatic niche formation) and "social" behavior are useful principles allowing putting into a coherent frame many features of circulating cancer cells. This interpretative frame is described by the comparison with analog behavioral traits typical of various animal models.


Assuntos
Neoplasias , Animais , Neoplasias/patologia , Inteligência , Microambiente Tumoral
2.
Cancer Metastasis Rev ; 42(1): 197-215, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36757577

RESUMO

The biological complexity of cancer represents a tremendous clinical challenge, resulting in the frequent failure of current treatment protocols. In the rapidly evolving scenario of a growing tumor, anticancer treatments impose a drastic perturbation not only to cancer cells but also to the tumor microenvironment, killing a portion of the cells and inducing a massive stress response in the survivors. Consequently, treatments can act as a double-edged sword by inducing a temporary response while laying the ground for therapy resistance and subsequent disease progression. Cancer cell dormancy (or quiescence) is a central theme in tumor evolution, being tightly linked to the tumor's ability to survive cytotoxic challenges, metastasize, and resist immune-mediated attack. Accordingly, quiescent cancer cells (QCCs) have been detected in virtually all the stages of tumor development. In recent years, an increasing number of studies have focused on the characterization of quiescent/therapy resistant cancer cells, unveiling QCCs core transcriptional programs, metabolic plasticity, and mechanisms of immune escape. At the same time, our partial understanding of tumor quiescence reflects the difficulty to identify stable QCCs biomarkers/therapeutic targets and to control cancer dormancy in clinical settings. This review focuses on recent discoveries in the interrelated fields of dormancy, stemness, and therapy resistance, discussing experimental evidences in the frame of a nonlinear dynamics approach, and exploring the possibility that tumor quiescence may represent not only a peril but also a potential therapeutic resource.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Células-Tronco Neoplásicas/patologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Progressão da Doença , Microambiente Tumoral
3.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077264

RESUMO

Quiescent cancer cells (QCCs) are a common feature of solid tumors, representing a major obstacle to the long-term success of cancer therapies. We isolated QCCs ex vivo from non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) xenografts with a label-retaining strategy and compared QCCs gene expression profiles to identify a shared "quiescence signature". Principal Component Analysis (PCA) revealed a specific component neatly discriminating quiescent and replicative phenotypes in NSCLC and CRC. The discriminating component showed significant overlapping, with 688 genes in common including ZEB2, a master regulator of stem cell plasticity and epithelial-to-mesenchymal transition (EMT). Gene set enrichment analysis showed that QCCs of both NSCLC and CRC had an increased expression of factors related to stemness/self renewal, EMT, TGF-ß, morphogenesis, cell adhesion and chemotaxis, whereas proliferating cells overexpressed Myc targets and factors involved in RNA metabolism. Eventually, we analyzed in depth by means of a complex network approach, both the 'morphogenesis module' and the subset of differentially expressed genes shared by NCSLC and CRC. This allowed us to recognize different gene regulation network wiring for quiescent and proliferating cells and to underpin few genes central for network integration that may represent new therapeutic vulnerabilities. Altogether, our results highlight common regulatory pathways in QCCs of lung and colorectal tumors that may be the target of future therapeutic interventions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Colorretais , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Pulmão/patologia , Neoplasias Pulmonares/metabolismo
4.
Breast Cancer Res ; 22(1): 117, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126915

RESUMO

Severe coronavirus disease 2019 (COVID-19) causes a hyperactivation of immune cells, resulting in lung inflammation. Recent studies showed that COVID-19 induces the production of factors previously implicated in the reawakening of dormant breast cancer cells such as neutrophil extracellular traps (NETs). The presence of NETs and of a pro-inflammatory microenvironment may therefore promote breast cancer reactivation, increasing the risk of pulmonary metastasis. Further studies will be required to confirm the link between COVID-19 and cancer recurrence. However, an increased awareness on the potential risks for breast cancer patients with COVID-19 may lead to improved treatment strategies to prevent metastatic relapse.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/virologia , Infecções por Coronavirus/imunologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/virologia , Pneumonia Viral/imunologia , Betacoronavirus/imunologia , Neoplasias da Mama/patologia , COVID-19 , Infecções por Coronavirus/virologia , Armadilhas Extracelulares/imunologia , Feminino , Humanos , Pulmão/imunologia , Pulmão/patologia , Recidiva Local de Neoplasia/patologia , Neutrófilos/imunologia , Pandemias , Pneumonia/imunologia , Pneumonia/virologia , Pneumonia Viral/virologia , SARS-CoV-2 , Microambiente Tumoral/imunologia
5.
Gut ; 67(5): 903-917, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28389531

RESUMO

OBJECTIVE: Cancer stem cells (CSCs) are responsible for tumour formation and spreading, and their targeting is required for tumour eradication. There are limited therapeutic options for advanced colorectal cancer (CRC), particularly for tumours carrying RAS-activating mutations. The aim of this study was to identify novel CSC-targeting strategies. DESIGN: To discover potential therapeutics to be clinically investigated as single agent, we performed a screening with a panel of FDA-approved or investigational drugs on primary CRC cells enriched for CSCs (CRC-SCs) isolated from 27 patients. Candidate predictive biomarkers of efficacy were identified by integrating genomic, reverse-phase protein microarray (RPPA) and cytogenetic analyses, and validated by immunostainings. DNA replication stress (RS) was increased by employing DNA replication-perturbing or polyploidising agents. RESULTS: The drug-library screening led to the identification of LY2606368 as a potent anti-CSC agent acting in vitro and in vivo in tumour cells from a considerable number of patients (∼36%). By inhibiting checkpoint kinase (CHK)1, LY2606368 affected DNA replication in most CRC-SCs, including RAS-mutated ones, forcing them into premature, lethal mitoses. Parallel genomic, RPPA and cytogenetic analyses indicated that CRC-SCs sensitive to LY2606368 displayed signs of ongoing RS response, including the phosphorylation of RPA32 and ataxia telangiectasia mutated serine/threonine kinase (ATM). This was associated with mutation(s) in TP53 and hyperdiploidy, and made these CRC-SCs exquisitely dependent on CHK1 function. Accordingly, experimental increase of RS sensitised resistant CRC-SCs to LY2606368. CONCLUSIONS: LY2606368 selectively eliminates replication-stressed, p53-deficient and hyperdiploid CRC-SCs independently of RAS mutational status. These results provide a strong rationale for biomarker-driven clinical trials with LY2606368 in patients with CRC.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 do Ponto de Checagem/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Pirazinas/farmacologia , Pirazóis/farmacologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Neoplasias Colorretais/genética , Replicação do DNA/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Mutação , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Supressora de Tumor p53/genética
6.
Cell Biol Toxicol ; 34(6): 459-469, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29478126

RESUMO

Biobanking of molecularly characterized colorectal cancer stem cells (CSCs) generated from individual patients and growing as spheroids in defined serum-free media offer a fast, feasible, and multi-level approach for the screening of targeted therapies and drug resistance molecular studies. By combining in vitro and in vivo analyses of cetuximab efficacy with genetic data on an ongoing collection of stem cell-enriched spheroids, we describe the identification and preliminary characterization of microsatellite stable (MSS) CSCs that, despite the presence of the KRAS (G12D) mutation, display epidermal growth factor (EGF)-dependent growth and are strongly inhibited by anti-EGF-receptor (EGFR) treatment. In parallel, we detected an increased resistance to anti-EGFR therapy of microsatellite instable (MSI) CSC lines irrespective of KRAS mutational status. MSI CSC lines carried mutations in genes coding for proteins with a role in RAS and calcium signaling, highlighting the role of a genomically unstable context in determining anti-EGFR resistance. Altogether, these results argue for a multifactorial origin of anti-EGFR resistance that emerges as the effect of multiple events targeting direct and indirect regulators of the EGFR pathway. An improved understanding of key molecular determinants of sensitivity/resistance to EGFR inhibition will be instrumental to optimize the clinical efficacy of anti-EGFR agents, representing a further step towards personalized treatments.


Assuntos
Neoplasias Colorretais/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Bancos de Espécimes Biológicos/tendências , Cetuximab/farmacologia , Neoplasias Colorretais/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fator de Crescimento Epidérmico/fisiologia , Receptores ErbB/fisiologia , Humanos , Mutação , Panitumumabe , Medicina de Precisão/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética , Esferoides Celulares/fisiologia , Células Tumorais Cultivadas/fisiologia
7.
Haematologica ; 100(2): 178-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25533803

RESUMO

Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation directly, dexamethasone stimulates expansion of these cells indirectly by stimulating maturation and cytokinesis supporting activity of macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Eritroblastos/citologia , Eritropoese/fisiologia , Macrófagos/citologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Eritroblastos/efeitos dos fármacos , Eritroblastos/fisiologia , Eritropoese/efeitos dos fármacos , Citometria de Fluxo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Microscopia de Vídeo , Imagem com Lapso de Tempo
8.
Pharmaceutics ; 16(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543281

RESUMO

We describe the development and validation of a HPLC-MS/MS method to assess the pharmacokinetics and tumor distribution of fenretinide, a synthetic retinoid chemically related to all-trans-retinoic acid, after administration of a novel oral nanoformulation of fenretinide, called bionanofenretinide (BNF). BNF was developed to overcome the major limitation of fenretinide: its poor aqueous solubility and bioavailability due to its hydrophobic nature. The method proved to be reproducible, precise and highly accurate for the measurement of the drug and the main metabolites. The lower limit of quantification resulted in 1 ng/mL. The curve range of 1-500 ng/mL and 50-2000 ng/mL, for plasma and tumor homogenate, respectively, was appropriate for the analysis, as demonstrated by the accuracy of between 96.8% and 102.4% for plasma and 96.6 to 102.3% for the tumor. The interdays precision and accuracy determined on quality controls at three different levels were in the ranges of 6.9 to 7.5% and 99.3 to 101.0%, and 0.96 to 1.91% and 102.3 to 105.8% for plasma and tumor, respectively. With the application of the novel assay in explorative pharmacokinetic studies, following acute and chronic oral administration of the nanoformulation, fenretinide was detected in plasma and tumor tissue at a concentration higher than the IC50 value necessary for in vitro inhibitory activity (i.e., 1-5 µM) in different cancer cells lines. We were also able to detect the presence in plasma and tumor of active and inactive metabolites of fenretinide.

9.
Stem Cells ; 30(8): 1587-96, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22644674

RESUMO

Blood transfusions have become indispensable to treat the anemia associated with a variety of medical conditions ranging from genetic disorders and cancer to extensive surgical procedures. In developed countries, the blood supply is generally adequate. However, the projected decline in blood donor availability due to population ageing and the difficulty in finding rare blood types for alloimmunized patients indicate a need for alternative red blood cell (RBC) transfusion products. Increasing knowledge of processes that govern erythropoiesis has been translated into efficient procedures to produce RBC ex vivo using primary hematopoietic stem cells, embryonic stem cells, or induced pluripotent stem cells. Although in vitro-generated RBCs have recently entered clinical evaluation, several issues related to ex vivo RBC production are still under intense scrutiny: among those are the identification of stem cell sources more suitable for ex vivo RBC generation, the translation of RBC culture methods into clinical grade production processes, and the development of protocols to achieve maximal RBC quality, quantity, and maturation. Data on size, hemoglobin, and blood group antigen expression and phosphoproteomic profiling obtained on erythroid cells expanded ex vivo from a limited number of donors are presented as examples of the type of measurements that should be performed as part of the quality control to assess the suitability of these cells for transfusion. New technologies for ex vivo erythroid cell generation will hopefully provide alternative transfusion products to meet present and future clinical requirements.


Assuntos
Transfusão de Sangue/métodos , Transfusão de Eritrócitos/métodos , Eritrócitos/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
10.
Stem Cells ; 30(9): 1819-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22753241

RESUMO

Tumor-initiating cells are responsible for tumor maintenance and relapse in solid and hematologic cancers. Although tumor-initiating cells were initially believed to be mainly quiescent, rapidly proliferating tumorigenic cells were found in breast cancer. In colon cancer, the proliferative activity of the tumorigenic population has not been defined, although it represents an essential parameter for the development of more effective therapeutic strategies. Here, we show that tumorigenic colon cancer cells can be found in a rapidly proliferating state in vitro and in vivo, both in human tumors and mouse xenografts. Inhibitors of polo-like kinase1 (Plk1), a mitotic kinase essential for cell proliferation, demonstrated maximal efficiency over other targeted compounds and chemotherapeutic agents in inducing death of colon cancer-initiating cells in vitro. In vivo, Plk1 inhibitors killed CD133(+) colon cancer cells leading to complete growth arrest of colon cancer stem cell-derived xenografts, whereas chemotherapeutic agents only slowed tumor progression. While chemotherapy treatment increased CD133(+) cell proliferation, treatment with Plk1 inhibitors eliminated all proliferating tumor-initiating cells. Quiescent CD133(+) cells that survived the treatment with Plk1 inhibitors could be killed by subsequent Plk1 inhibition when they exited from quiescence. Altogether, these results provide a new insight into the proliferative status of colon tumor-initiating cells both in basal conditions and in response to therapy and indicate Plk1 inhibitors as potentially useful in the treatment of colorectal cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Antígeno AC133 , Animais , Antígenos CD/biossíntese , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/biossíntese , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Peptídeos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Pteridinas/farmacologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transplante Heterólogo , Quinase 1 Polo-Like
11.
Am J Hematol ; 88(9): 723-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23720412

RESUMO

Erythropoiesis is a tightly regulated process which becomes decoupled from its normal differentiation program in patients with polycythemia vera (PV). Somatic mutations in JAK2 are commonly associated with this myeloid proliferative disorder. To gain insight into the molecular events that are required for abnormally developing erythroid cells to escape dependence on normal growth signals, we performed in vitro expansion of mature erythroblasts (ERY) from seven normal healthy donors and from seven polycythemic patients in the presence of IL3, EPO, SCF for 10, 11, or 13 days. Normal ERYs required exposure to the glucocorticoid dexamethasone (Dex) for expansion, while PV-derived ERYs expanded in the absence of dexamethasone. RNA expression profiling revealed enrichment of two known oncogenes, GPR56 and RAB4a, in PV-derived ERYs along with reduced expression levels of transcription factor TAL1 (ANOVA FDR < 0.05). While both normal and polycythemic-derived ERYs integrated signaling cascades for growth, they did so via different signaling pathways which are represented by their differential phospho-profiles. Our results show that normal ERYs displayed greater levels of phosphorylation of EGFR, PDGFRß, TGFß, and cKit, while PV-derived ERYs were characterized by increased phosphorylation of cytoplasmic kinases in the JAK/STAT, PI3K, and GATA1 pathways. Together these data suggest that PV erythroblast expansion and maturation may be maintained and enriched in the absence of dexamethasone through reduced TAL1 expression and by accessing additional signaling cascades. Members of this acquired repertoire may provide important insight into the pathogenesis of aberrant erythropoiesis in myeloproliferative neoplasms such as polycythemia vera.


Assuntos
Eritroblastos/metabolismo , Eritropoese/genética , Fosfoproteínas/genética , Policitemia Vera/genética , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Dexametasona/farmacologia , Eritroblastos/efeitos dos fármacos , Eritroblastos/patologia , Eritropoetina/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interleucina-3/farmacologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/metabolismo , Policitemia Vera/metabolismo , Policitemia Vera/patologia , Proteômica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Fator de Células-Tronco/farmacologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Proteínas rab4 de Ligação ao GTP/genética , Proteínas rab4 de Ligação ao GTP/metabolismo
12.
Nature ; 445(7123): 102-5, 2007 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17167422

RESUMO

Caspase-3 is activated during both terminal differentiation and erythropoietin-starvation-induced apoptosis of human erythroid precursors. The transcription factor GATA-1, which performs an essential function in erythroid differentiation by positively regulating promoters of erythroid and anti-apoptotic genes, is cleaved by caspases in erythroid precursors undergoing cell death upon erythropoietin starvation or engagement of the death receptor Fas. In contrast, by an unknown mechanism, GATA-1 remains uncleaved when these cells undergo terminal differentiation upon stimulation with Epo. Here we show that during differentiation, but not during apoptosis, the chaperone protein Hsp70 protects GATA-1 from caspase-mediated proteolysis. At the onset of caspase activation, Hsp70 co-localizes and interacts with GATA-1 in the nucleus of erythroid precursors undergoing terminal differentiation. In contrast, erythropoietin starvation induces the nuclear export of Hsp70 and the cleavage of GATA-1. In an in vitro assay, Hsp70 protects GATA-1 from caspase-3-mediated proteolysis through its peptide-binding domain. The use of RNA-mediated interference to decrease the Hsp70 content of erythroid precursors cultured in the presence of erythropoietin leads to GATA-1 cleavage, a decrease in haemoglobin content, downregulation of the expression of the anti-apoptotic protein Bcl-X(L), and cell death by apoptosis. These effects are abrogated by the transduction of a caspase-resistant GATA-1 mutant. Thus, in erythroid precursors undergoing terminal differentiation, Hsp70 prevents active caspase-3 from cleaving GATA-1 and inducing apoptosis.


Assuntos
Apoptose , Caspase 3/metabolismo , Eritropoese , Fator de Transcrição GATA1/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Diferenciação Celular , Células Cultivadas , Eritroblastos/citologia , Eritroblastos/metabolismo , Eritropoetina/deficiência , Eritropoetina/metabolismo , Humanos , Imunoprecipitação , Ligação Proteica
13.
Methods Mol Biol ; 2429: 555-565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507189

RESUMO

Cancer stem cells (CSCs) are responsible for the initiation of primary tumors and for metastasis seeding at distant organs. Therefore, they represent crucial targets for the study and preclinical testing of new antimetastatic approaches. We recently generated a molecularly characterized biobank of colorectal CSCs, isolated from individual patients and cultured in serum-free medium as multicellular spheroids. Here, we describe in detail the generation of a metastatic model of colorectal cancer based on the orthotopic injection of CSCs into the cecum serosa of immunodeficient mice. Such a model represents an excellent experimental system to investigate the cellular and molecular mechanisms involved in colorectal cancer metastasis, to analyze rare premetastatic elements such as circulating and disseminated tumor cells, and for the preclinical testing of new agents with potential antimetastatic activity.


Assuntos
Neoplasias Colorretais , Células-Tronco Neoplásicas , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Xenoenxertos , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/patologia
14.
Work ; 73(2): 719-728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431217

RESUMO

BACKGROUND: Sickness absence, disability pensions, and use of healthcare due to disabling back pain are a high economic burden in Germany. Assessment are needed to identify employees who are likely to need intensive support. OBJECTIVE: The cohort study examined whether rehabilitation, disability pensions and death can be predicted by a simple self-reported rating of work ability in employees with back pain in Germany. METHODS: Employees aged 45 to 59 years who reported back pain in the last 3 months completed the Work Ability Score in 2017 (0-10 points). Individual scores were categorized into poor (0-5 points), moderate (6-7) and at least good (8-10) work ability. Outcomes were extracted from administrative records covering the period until the end of 2018. Proportional hazard models were fitted to determine the prognostic benefit of the Work Ability Score. RESULTS: Data for 6,917 participants were included (57.8% women). The median follow-up time was 20 months. Of the participants, 52.1% had a good or excellent, 27.7% a moderate, and 20.2% a poor Work Ability Score. During follow-up, 548 persons were granted rehabilitation measures, 57 persons disability pensions, and 23 died. Fully adjusted analyses showed an increased risk of a rehabilitation measure (hazard ratio = 2.65; 95% CI 2.11; 3.34) and a disability pension (HR = 4.12; 95% CI 2.02; 8.39) in employees with poor work ability. A premature death was not associated with poor work ability. CONCLUSIONS: The Work Ability Score is a potential tool to identify individuals, reporting back pain, with an increased risk of health-related early retirement and work disability.


Assuntos
Pessoas com Deficiência , Avaliação da Capacidade de Trabalho , Feminino , Humanos , Masculino , Estudos de Coortes , Pensões , Pessoas com Deficiência/reabilitação , Dor nas Costas
15.
Cancers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35954367

RESUMO

Lung cancer is the leading cause of cancer death worldwide. Despite significant advances in research and therapy, a dismal 5-year survival rate of only 10-20% urges the development of reliable preclinical models and effective therapeutic tools. Lung cancer is characterized by a high degree of heterogeneity in its histology, a genomic landscape, and response to therapies that has been traditionally difficult to reproduce in preclinical models. However, the advent of three-dimensional culture technologies has opened new perspectives to recapitulate in vitro individualized tumor features and to anticipate treatment efficacy. The generation of lung cancer organoids (LCOs) has encountered greater challenges as compared to organoids derived from other tumors. In the last two years, many efforts have been dedicated to optimizing LCO-based platforms, resulting in improved rates of LCO production, purity, culture timing, and long-term expansion. However, due to the complexity of lung cancer, further advances are required in order to meet clinical needs. Here, we discuss the evolution of LCO technology and the use of LCOs in basic and translational lung cancer research. Although the field of LCOs is still in its infancy, its prospective development will likely lead to new strategies for drug testing and biomarker identification, thus allowing a more personalized therapeutic approach for lung cancer patients.

16.
Biology (Basel) ; 11(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36290331

RESUMO

Up-to-date in vitro and in vivo preclinical models expressing the patient-specific cancer lineage responsible for CRC and its metastatic behavior and responsiveness to therapy are needed. Exosomes' role in tumorigenesis and the metastatic process was demonstrated, and the material content and size of the exosomes are associated with a poor prognosis of CRC. Exosomes are generally imagined after their recovery from blood serum as isolated entities, and our work aims to investigate them "in situ" in their native environment by scanning and transmission electron microscopy to understand their secretion modalities. We studied CRC stem cells in patient-derived multicellular tumor spheroids (MTSs) and in their mouse xenograft to find possible differences in terms of exosome amount, size, and secretion site between in vitro and in vivo models. We observed that MTSs' exosome secretion patterns depend on their structural complexity: few-layer MTSs show a lesser exosome secretion, limited to the apical domain of cancer cells, secretion increases in multilayered MTSs, and it develops from apical and basolateral cancer cells domains. In xenograft models, exosome secretion occurs from all cancer cell domains, and it is quantitatively greater than that observed in MTSs. This difference in exosome secretion pattern between MTSs and xenografts may be due to the influence of surrounding non-tumor cells.

17.
Front Oncol ; 12: 830873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719935

RESUMO

Chemotherapy is the mainstay for the treatment of non-small cell lung cancer (NSCLC). However, NSCLC cells are either intrinsically chemoresistant or rapidly develop therapy resistance. Cancer stem cells (CSCs) are widely recognized as the cell population responsible for resistance to systemic therapies, but the molecular responses of CSCs to chemotherapeutic agents are largely unknown. We identified the embryonic protein CRIPTO in stem cell-enriched spheroid cultures of adenocarcinoma (AC) and squamous cell carcinoma (SCC) derived from NSCLC surgical specimens. The CRIPTO-positive population had increased clonogenic capacity and expression of stem cell-related factors. Stemness-related properties were also obtained with forced CRIPTO expression, whereas CRIPTO downregulation resulted in cell cycle blockade and CSCs death. Cell populations positive and negative for CRIPTO expression were interconvertible, and interfering with their reciprocal equilibrium resulted in altered homeostasis of cell expansion both in spheroid cultures and in tumor xenografts. Chemotherapy treatment of NSCLC cells resulted in reduction of cell number followed by increased CRIPTO expression and selective survival of CRIPTO-positive cells. In NSCLC tumor xenografts, chemotherapeutic agents induced partial cell death and tumor stabilization followed by CRIPTO overexpression and tumor progression. Altogether, these findings indicate CRIPTO as a marker of lung CSCs possibly implicated in cancer cell plasticity and post-chemotherapy tumor progression.

18.
Front Oncol ; 12: 869485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837106

RESUMO

Metastasis is the primary cause of death in patients with colorectal cancer (CRC), urging the need for preclinical models that recapitulate the metastatic process at the individual patient level. We used an orthotopic patient-derived xenograft (PDX) obtained through the direct implantation of freshly dissociated CRC cells in the colon of immunocompromised mice to model the metastatic process. Ortho-PDX engraftment was associated to a specific set of molecular features of the parental tumor, such as epithelial-to-mesenchymal transition (EMT), TGF-ß pathway activation, increased expression of stemness-associated factors and higher numbers of circulating tumor cells (CTCs) clusters expressing the metastatic marker CD44v6. A parallel analysis of orthotopic/metastatic xenografts and organoids showed that tumor cells underwent mesenchymal-to-epithelial transition at the metastatic site and that metastasis-derived organoids had increased chemotherapy resistance. These observations support the usefulness of ortho-PDX as a preclinical model to study metastasis-related features and provide preliminary evidence that EMT/stemness properties of primary colorectal tumors may be crucial for orthotopic tumor engraftment.

19.
J Exp Clin Cancer Res ; 41(1): 86, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260172

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) are responsible for the metastatic dissemination of colorectal cancer (CRC) to the liver, lungs and lymph nodes. CTCs rarity and heterogeneity strongly limit the elucidation of their biological features, as well as preclinical drug sensitivity studies aimed at metastasis prevention. METHODS: We generated organoids from CTCs isolated from an orthotopic CRC xenograft model. CTCs-derived organoids (CTCDOs) were characterized through proteome profiling, immunohistochemistry, immunofluorescence, flow cytometry, tumor-forming capacity and drug screening assays. The expression of intra- and extracellular markers found in CTCDOs was validated on CTCs isolated from the peripheral blood of CRC patients. RESULTS: CTCDOs exhibited a hybrid epithelial-mesenchymal transition (EMT) state and an increased expression of stemness-associated markers including the two homeobox transcription factors Goosecoid and Pancreatic Duodenal Homeobox Gene-1 (PDX1), which were also detected in CTCs from CRC patients. Functionally, CTCDOs showed a higher migratory/invasive ability and a different response to pathway-targeted drugs as compared to xenograft-derived organoids (XDOs). Specifically, CTCDOs were more sensitive than XDOs to drugs affecting the Survivin pathway, which decreased the levels of Survivin and X-Linked Inhibitor of Apoptosis Protein (XIAP) inducing CTCDOs death. CONCLUSIONS: These results indicate that CTCDOs recapitulate several features of colorectal CTCs and may be used to investigate the features of metastatic CRC cells, to identify new prognostic biomarkers and to devise new potential strategies for metastasis prevention.


Assuntos
Neoplasias Colorretais , Células Neoplásicas Circulantes , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Células Neoplásicas Circulantes/metabolismo , Organoides/metabolismo , Células-Tronco/metabolismo
20.
Blood ; 113(7): 1522-5, 2009 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19060244

RESUMO

An increased expression of antiapoptotic molecules is often found in malignant cells, where it contributes to their clonal expansion by conferring an improved survival ability. We found that erythroid precurors derived from patients with polycythemia vera (PV) with medium and high JAK2V617F mutation rates often express elevated levels of the antiapoptotic molecules Bcl-2 and Bcl-X(L) (5 of 12 patients with 3 to 7 times Bcl-2 and 3 of 12 patients with 4 to 7 times Bcl-X(L) than average normal controls) and are more resistant to myelosuppressive drugs than normal erythroblasts. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-W, induced apoptosis preferentially in JAK2V617F-high PV erythroid precursors as compared with JAK2V617F-low or normal erythroblasts. ABT-737 inhibited also the proliferation of PV erythroblasts and interfered with the formation of endogenous erythroid colonies by PV hematopoietic progenitors. Altogether, these results suggest that small-molecule inhibitors of Bcl-2/Bcl-X(L) may be used in the treatment of patients with PV with high JAK2V617F allele burden.


Assuntos
Compostos de Bifenilo/farmacologia , Células Precursoras Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Nitrofenóis/farmacologia , Policitemia Vera/tratamento farmacológico , Policitemia Vera/patologia , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Células Precursoras Eritroides/citologia , Expressão Gênica/fisiologia , Humanos , Mimetismo Molecular , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA