Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Mater Eng ; 35(3): 303-321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517766

RESUMO

BACKGROUND: The clinical outcomes of bipolar radiofrequency (RF) lipolysis, a prevalent non-invasive fat reduction procedure, hinge on the delicate balance between effective lipolysis and patient safety, with skin overheating and subsequent tissue damage as primary concerns. OBJECTIVE: This study aimed to investigate a novel bipolar radiofrequency lipolysis technique, safeguarding the skin through an innovative PID temperature control algorithm. METHODS: Utilizing COMSOL Multiphysics simulation software, a two-dimensional fat and skin tissue model was established, simulating various PID temperature control schemes. The crux of the simulation involved a comparative analysis of different PID temperatures at 45 °C, 50 °C, and 55 °C and constant power strategies, assessing their implications on skin temperature. Concurrently, a custom bipolar radiofrequency lipolysis device was developed, with ex vivo experiments conducted using porcine tissue for empirical validation. RESULTS: The findings indicated that with PID settings of Kp = 7, Ki = 2, and Kd = 0, and skin temperature control at 45 °C or 50 °C, the innovative PID-based epidermal temperature control strategy successfully maintained the epidermal temperature within a safe range. This maintenance was achieved without compromising the effectiveness of RF lipolysis, significantly reducing the risk of thermal damage to the skin layers. CONCLUSION: Our research confirms the substantial practical utility of this advanced PID-based bipolar RF lipolysis technique in clinical aesthetic procedures, enhancing patient safety during adipose tissue ablation therapies.


Assuntos
Algoritmos , Lipólise , Temperatura Cutânea , Suínos , Animais , Tecido Adiposo , Humanos , Simulação por Computador , Pele/efeitos da radiação , Modelos Biológicos , Lipectomia/métodos , Lipectomia/instrumentação , Ablação por Radiofrequência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA