Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Drug Resist Updat ; 73: 101055, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387281

RESUMO

Tumor-associated macrophages (TAMs) are often associated with chemoresistance and resultant poor clinical outcome in solid tumors. Here, we demonstrated that TAMs-released chemokine-C-C motif chemokine 22 (CCL22) in esophageal squamous cell carcinoma (ESCC) stroma was tightly correlated with the chemoresistance of ESCC patients. TAMs-secreted CCL22 was able to block the growth inhibitory and apoptosis-promoting effects of cisplatin on ESCC cells. Mechanistically, CCL22 stimulated intratumoral diacylglycerol kinase α (DGKα) to produce phosphatidic acid (PA), which suppressed the activity of NADPH oxidase 4 (NOX4) and then blocked the overproduction of intratumoral reactive species oxygen (ROS) induced by cisplatin. CCL22 activated DGKα/nuclear factor-κB (NF-κB) axis to upregulate the level of several members of ATP binding cassette (ABC) transporter superfamily, including ABC sub-family G member 4 (ABCG4), ABC sub-family A member 3 (ABCA3), and ABC sub-family A member 5 (ABCA5), to lower the intratumoral concentration of cisplatin. Consequently, these processes induced the cisplatin resistance in ESCC cells. In xenografted models, targeting DGKα with 5'-cholesterol-conjugated small-interfering (si) RNA enhanced the chemosensitivity of cisplatin in ESCC treatment, especially in the context of TAMs. Our data establish the correlation between the TAMs-induced intratumoral metabolic product/ROS axis and chemotherapy efficacy in ESCC treatment and reveal relevant molecular mechanisms.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Macrófagos Associados a Tumor , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio , RNA Interferente Pequeno/genética , Proliferação de Células , Quimiocinas/farmacologia , Quimiocinas/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CCL22/farmacologia , Quimiocina CCL22/uso terapêutico
2.
Cell Commun Signal ; 22(1): 283, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783346

RESUMO

BACKGROUND: In addition to functioning as a precise monitoring mechanism in cell cycle, the anaphase-promoting complex/cyclosome (APC/C) is reported to be involved in regulating multiple metabolic processes by facilitating the ubiquitin-mediated degradation of key enzymes. Fatty acid oxidation is a metabolic pathway utilized by tumor cells that is crucial for malignant progression; however, its association with APC/C remains to be explored. METHODS: Cell cycle synchronization, immunoblotting, and propidium iodide staining were performed to investigate the carnitine palmitoyltransferase 1 C (CPT1C) expression manner. Proximity ligation assay and co-immunoprecipitation were performed to detect interactions between CPT1C and APC/C. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium, inner salt (MTS) assays, cell-scratch assays, and transwell assays and xenograft transplantation assays were performed to investigate the role of CPT1C in tumor progression in vitro and in vivo. Immunohistochemistry was performed on tumor tissue microarray to evaluate the expression levels of CPT1C and explore its potential clinical value. RESULTS: We identified CPT1C as a novel APC/C substrate. CPT1C protein levels exhibited cell cycle-dependent fluctuations, peaking at the G1/S boundary. Elevated CPT1C accelerated the G1/S transition, facilitating tumor cell proliferation in vitro and in vivo. Furthermore, CPT1C enhanced fatty acid utilization, upregulated ATP levels, and decreased reactive oxygen species levels, thereby favoring cell survival in a harsh metabolic environment. Clinically, high CPT1C expression correlated with poor survival in patients with esophageal squamous cell carcinoma. CONCLUSIONS: Overall, our results revealed a novel interplay between fatty acid utilization and cell cycle machinery in tumor cells. Additionally, CPT1C promoted tumor cell proliferation and survival by augmenting cellular ATP levels and preserving redox homeostasis, particularly under metabolic stress. Therefore, CPT1C could be an independent prognostic indicator in esophageal squamous cell carcinoma.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Carnitina O-Palmitoiltransferase , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Humanos , Animais , Linhagem Celular Tumoral , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Metabolismo Energético/genética , Regulação para Cima , Progressão da Doença , Proliferação de Células , Camundongos Nus , Camundongos , Feminino , Masculino , Fase S , Camundongos Endogâmicos BALB C
3.
Sci China Life Sci ; 67(4): 663-679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38155279

RESUMO

Chemoresistance is a significant barrier to effective cancer treatment. Potential mechanisms for chemoresistance include reactive oxygen species (ROS) accumulation and expression of chemoresistance-promoting genes. Here, we report a novel function of lncRNA16 in the inhibition of ROS generation and the progression of chemoresistance. By analyzing the serum levels of lncRNA16 in a cohort of 35 patients with non-small cell lung cancer (NSCLC) and paired serum samples pre- and post-treatment from 10 NSCLC patients receiving neoadjuvant platinum-based chemotherapy, performing immunohistochemistry (IHC) assays on 188 NSCLC tumor samples, using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) assays, as well as RNA immunoprecipitation (RIP) and RNA pull-down analyses, we discovered that patients with increased serum levels of lncRNA16 exhibited a poor response to platinum-based chemotherapy. The expression of hemoglobin subunit beta (HBB) and NDUFAF5 significantly increases with the development of chemoresistance. LncRNA16 binds to HBB and promotes HBB accumulation by inhibiting autophagy. LncRNA16 can also inhibit ROS generation via the HBB/NDUFAF5 axis and function as a scaffold to facilitate the colocalization of HBB and NDUFAF5 in the mitochondria. Importantly, preclinical studies in mouse models of chemo-resistant NSCLC have suggested that lncRNA16 targeting by trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA restores chemosensitivity and results in tumor growth inhibition with no detectable toxicity in vivo. Overall, lncRNA16 is a promising therapeutic target for overcoming chemoresistance, and the combination of first-line platinum-based chemotherapy with lncRNA16 intervention can substantially enhance anti-tumor efficacy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Cisplatino/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Metiltransferases/genética , Proteínas Mitocondriais/metabolismo
4.
Signal Transduct Target Ther ; 9(1): 21, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38280862

RESUMO

Abnormal metabolism is regarded as an oncogenic hallmark related to tumor progression and therapeutic resistance. Present study employed multi-omics, including phosphoproteomics, untargeted metabolomics and lipidomics, to demonstrate that the pAKT2 Ser128 and pCCTα Ser315/319/323-positive cancer-associated fibroblasts (CAFs) substantially release phosphatidylcholines (PCs), contributing to the resistance of focal adhesion kinase (FAK) inhibitors in esophageal squamous cell carcinoma (ESCC) treatment. Additionally, we observed extremely low levels of FAK Tyr397 expression in CAFs, potentially offering no available target for FAK inhibitors playing their anti-growth role in CAFs. Consequently, FAK inhibitor increased the intracellular concentration of Ca2+ in CAFs, promoting the formation of AKT2/CCTα complex, leading to phosphorylation of CCTα Ser315/319/323 sites and eventually enhancing stromal PC production. This activation could stimulate the intratumoral Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) pathway, triggering resistance to FAK inhibition. Analysis of clinical samples demonstrated that stromal pAKT2 Ser128 and pCCTα Ser315/319/323 are related to the tumor malignancy and reduced patient survival. Pseudo-targeted lipidomics and further validation cohort quantitatively showed that plasma PCs enable to distinguish the malignant extent of ESCC patients. In conclusion, inhibition of stroma-derived PCs and related pathway could be possible therapeutic strategies for tumor therapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Transdução de Sinais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Int J Biol Sci ; 20(8): 2881-2903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904019

RESUMO

The mechanism that maintains ER-to-Golgi vesicles formation and transport is complicated. As one of the adapters, Ninein-like protein (Nlp) participated in assembly and transporting of partial ER-to-Golgi vesicles that contained specific proteins, such as ß-Catenin and STING. Nlp acted as a platform to sustain the specificity and continuity of cargoes during COPII and COPI-coated vesicle transition and transportation through binding directly with SEC31A as well as Rab1B. Thus, we proposed an integrated transport model that particular adapter participated in specific cargo selection or transportation through cooperating with different membrane associated proteins to ensure the continuity of cargo trafficking. Deficiency of Nlp led to vesicle budding failure and accumulation of unprocessed proteins in ER, which further caused ER stress as well as Golgi fragmentation, and PERK-eIF2α pathway of UPR was activated to reduce the synthesis of universal proteins. In contrast, upregulation of Nlp resulted in Golgi fragmentation, which enhanced the cargo transport efficiency between ER and Golgi. Moreover, Nlp deficient mice were prone to spontaneous B cell lymphoma, since the developments and functions of lymphocytes significantly depended on secretory proteins through ER-to-Golgi vesicle trafficking, including IL-13, IL-17 and IL-21. Thus, perturbations of Nlp altered ER-to-Golgi communication and cellular homeostasis, and might contribute to the pathogenesis of B cell lymphoma.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Animais , Humanos , Camundongos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico
6.
Cancer Lett ; : 217153, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102940

RESUMO

The transforming growth factor-ß (TGF-ß) signaling pathway is pivotal in inducing epithelial-mesenchymal transition (EMT) and promoting cancer metastasis. Long non-coding RNAs (lncRNAs) have emerged as significant players in these processes, yet their precise mechanisms remain elusive. Here, we demonstrate that TGF-ß-upregulated lncRNA 1 (TBUR1) is significantly activated by TGF-ß via Smad3/4 signaling in lung adenocarcinoma (LUAD) cells. Functionally, TBUR1 triggers EMT, enhances LUAD cell migration and invasion in vitro, and promotes metastasis in nude mice. Mechanistically, TBUR1 interacts with heterogeneous nuclear ribonucleoproteins C (hnRNPC) to stabilize GRB2 mRNA in an m6A-dependent manner. Clinically, TBUR1 is upregulated in LUAD tissues and correlates with poor prognosis, highlighting its potential as a prognostic biomarker and therapeutic target for LUAD. Taken together, our findings underscore the crucial role of TBUR1 in mediating TGF-ß-induced EMT and metastasis in LUAD, providing insights for future therapeutic interventions.

7.
Natl Sci Rev ; 11(5): nwae150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38803565

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% of ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the TME and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Among them, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.

8.
Med Rev (2021) ; 4(3): 244-256, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919397

RESUMO

Objectives: The majority of esophageal squamous dysplasia (ESD) patients progress slowly, while a subset of patients can undergo recurrence rapidly or progress to invasive cancer even after proper treatment. However, the molecular mechanisms underlying these clinical observations are still largely unknown. Methods: By sequencing the genomic data of 160 clinical samples from 49 tumor-free ESD patients and 88 esophageal squamous cell carcinoma (ESCC) patients, we demonstrated lower somatic mutation and copy number alteration (CNA) burden in ESD compared with ESCC. Results: Cross-species screening and functional assays identified ACSM5 as a novel driver gene for ESD progression. Furthermore, we revealed that miR-4292 promoted ESD progression and could serve as a non-invasive diagnostic marker for ESD. Conclusions: These findings largely expanded our understanding of ESD genetics and tumorigenesis, which possessed promising significance for improving early diagnosis, reducing overtreatment, and identifying high-risk ESD patients.

9.
10.
Med Rev (2021) ; 4(1): 1, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38515782
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA