Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(25): e202403949, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38613188

RESUMO

Quasi-solid polymer electrolyte (QPE) lithium (Li)-metal battery holds significant promise in the application of high-energy-density batteries, yet it suffers from low ionic conductivity and poor oxidation stability. Herein, a novel self-built electric field (SBEF) strategy is proposed to enhance Li+ transportation and accelerate the degradation dynamics of carbon-fluorine bond cleavage in LiTFSI by optimizing the termination of MXene. Among them, the SBEF induced by dielectric Nb4C3F2 MXene effectively constructs highly conductive LiF-enriched SEI and CEI stable interfaces, moreover, enhances the electrochemical performance of the QPE. The related Li-ion transfer mechanism and dual-reinforced stable interface are thoroughly investigated using ab initio molecular dynamics, COMSOL, XPS depth profiling, and ToF-SIMS. This comprehensive approach results in a high conductivity of 1.34 mS cm-1, leading to a small polarization of approximately 25 mV for Li//Li symmetric cell after 6000 h. Furthermore, it enables a prolonged cycle life at a high voltage of up to 4.6 V. Overall, this work not only broadens the application of MXene for QPE but also inspires the great potential of the self-built electric field in QPE-based high-voltage batteries.

2.
Small ; 19(32): e2300357, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37078837

RESUMO

High energy density micro-supercapacitors (MSCs) are in high demand for miniaturized electronics and microsystems. Research efforts today focus on materials development, applied in the planar interdigitated, symmetric electrode architecture. A novel "cup & core" device architecture that allows for printing of asymmetric devices without the need of accurately positioning the second finger electrode here have been introduced. The bottom electrode is either produced by laser ablation of a blade-coated graphene layer or directly screen-printed with graphene inks to create grids with high aspect ratio walls forming an array of "micro-cups". A quasi-solid-state ionic liquid electrolyte is spray-deposited on the walls; the top electrode material -MXene inks- is then spray-coated to fill the cup structure. The architecture combines the advantages of interdigitated electrodes for facilitated ion-diffusion, which is critical for 2D-material-based energy storage systems by providing vertical interfaces with the layer-by-layer processing of the sandwich geometry. Compared to flat reference devices, volumetric capacitance of printed "micro-cups" MSC increased considerably, while the time constant decreased (by 58%). Importantly, the high energy density (3.99 µWh cm-2 ) of the "micro-cups" MSC is also superior to other reported MXene and graphene-based MSCs.

3.
Angew Chem Int Ed Engl ; 59(29): 12147-12153, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32237031

RESUMO

Guiding the lithium ion (Li-ion) transport for homogeneous, dispersive distribution is crucial for dendrite-free Li anodes with high current density and long-term cyclability, but remains challenging for the unavailable well-designed nanostructures. Herein, we propose a two-dimensional (2D) heterostructure composed of defective graphene oxide (GO) clipped on mesoporous polypyrrole (mPPy) as a dual-functional Li-ion redistributor to regulate the stepwise Li-ion distribution and Li deposition for extremely stable, dendrite-free Li anodes. Owing to the synergy between the Li-ion transport nanochannels of mPPy and the Li-ion nanosieves of defective GO, the 2D mPPy-GO heterostructure achieves ultralong cycling stability (1000 cycles), even tests at 0 and 50 °C, and an ultralow overpotential of 70 mV at a high current density of 10.0 mA cm-2 , outperforming most reported Li anodes. Furthermore, mPPy-GO-Li/LiCoO2 full batteries demonstrate remarkably enhanced performance with a capacity retention of >90 % after 450 cycles. Therefore, this work opens many opportunities for creating 2D heterostructures for high-energy-density Li metal batteries.

4.
Small ; 13(34)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28692755

RESUMO

2D metal chalcogenide (MC) nanosheets (NS) have displayed high capacities as lithium-ion battery (LiB) anodes. Nevertheless, their complicated synthesis routes coupled with low electronic conductivity greatly limit them as promising LiB electrode material. Here, this work reports a facile single-walled carbon nanotube (SWCNT) percolating strategy for efficiently maximizing the electrochemical performances of gallium chalcogenide (GaX, X = S or Se). Multiscaled flexible GaX NS/SWCNT heterostructures with abundant voids for Li+ diffusion are fabricated by embedding the liquid-exfoliated GaX NS matrix within a SWCNT-percolated network; the latter improves the electron transport and ion diffusion kinetics as well as maintains the mechanical flexibility. Consequently, high capacities (i.e., 838 mAh g-1 per gallium (II) sulfide (GaS) NS/SWCNT mass and 1107 mAh g-1 per GaS mass; the latter is close to the theoretical value) and good rate capabilities are achieved, which can be majorly attributed to the alloying processes of disordered Ga formed after the first irreversible GaX conversion reaction, as monitored by in situ X-ray diffraction. The presented approach, colloidal solution processing of SWCNT and liquid-exfoliated MC NS to produce flexible paper-based electrode, could be generalized for wearable energy storage devices with promising performances.

5.
Innovation (Camb) ; 5(1): 100540, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38144039

RESUMO

MXenes have aroused intensive enthusiasm because of their exotic properties and promising applications. However, to date, they are usually synthesized by etching technologies. Developing synthetic technologies provides more opportunities for innovation and may extend unexplored applications. Here, we report a bottom-up gas-phase synthesis of Cl-terminated MXene (Ti2CCl2). The gas-phase synthesis endows Ti2CCl2 with unique surface chemistry, high phase purity, and excellent metallic conductivity, which can be used to accelerate polysulfide conversion kinetics and dramatically prolong the cyclability of Li-S batteries. In-depth mechanistic analysis deciphers the origin of the formation of Ti2CCl2 and offers a paradigm for tuning MXene chemical vapor deposition. In brief, the gas-phase synthesis transforms the synthesis of MXenes and unlocks the hardly achieved potentials of MXenes.

6.
Adv Sci (Weinh) ; 10(5): e2204930, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36507567

RESUMO

Lithium sulfur (LiS) batteries possess high theoretical capacity and energy density, holding great promise for next generation electronics and electrical vehicles. However, the LiS batteries development is hindered by the shuttle effect and sluggish conversion kinetics of lithium polysulfides (LiPSs). Designing highly polar materials such as metal oxides (MOs) with moderate adsorption and effective catalytic activity is essential to overcome the above issues. To design efficient MOs catalysts, it is critical and necessary to understand the adsorption mechanism and associated catalytic processes of LiPSs. However, most reviews still lack a comprehensive investigation of the basic mechanism and always ignore their in-depth relationship. In this review, a systematic analysis toward understanding the underlying adsorption and catalytic mechanism in LiS chemistry as well as discussion of the typical works concerning MOs electrocatalysts are provided. Moreover, to improve the sluggish "adsorption-diffusion-conversion" process caused by the low conductive nature of MOs, oxygen vacancies and heterostructure engineering are elucidated as the two most effective strategies. The challenges and prospects of MOs electrocatalysts are also provided in the last section. The authors hope this review will provide instructive guidance to design effective catalyst materials and explore practical possibilities for the commercialization of LiS batteries.

7.
Adv Sci (Weinh) ; 10(19): e2300660, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37078802

RESUMO

Two-dimensional (2D) transition metal carbides, and/or nitrides, so-called MXenes, have triggered intensive research interests in applications ranging from electrochemical energy storage to electronics devices. Producing these functional devices by printing necessitates to match the rheological properties of MXene dispersions to the requirements of various solution processing techniques. In particular, for additive manufacturing such as extrusion-printing, MXene inks with high solid fraction are typically required, which is commonly achieved by tediously removing excessive free water (top-down route). Here, the study reports on a bottom-up route to reach a highly concentrated binary MXene-water blend, so-called MXene dough, by controlling the water admixture to freeze-dried MXene flakes by exposure to water mist. The existence of a critical threshold of MXene solid content (≈60%), beyond which no dough is formed, or formed with compromised ductility is revealed. Such metallic MXene dough possesses high electrical conductivity, excellent oxidation stability, and can withstand a couple of months without apparent decay, providing that the MXene dough is properly stored at low-temperature with suppressed dehydration environment. Solution processing of the MXene dough into a micro-supercapacitor with gravimetric capacitance of 161.7 F g-1 is demonstrated. The impressive chemical and physical stability/redispersibility of MXene dough indicate its great promise in future commercialization.

8.
ACS Appl Mater Interfaces ; 15(3): 4591-4600, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36634284

RESUMO

Solution processing of two-dimensional nanomaterial inks guarantees efficient, straightforward fabrication of functional films, coatings, flexible devices, etc. Despite the excellent solution processibility and viscoelasticity of MXene aqueous inks, formulation of nonaqueous MXene inks with great affinity to both hydrophilic and hydrophobic substrates has proven quite challenging, limiting the practical applications of MXenes in printing/coatings on various substrates. Here, MXene surface chemistry is manipulated by asymmetrically grafting polystyrene and further concentrating the flakes into additive-free Janus MXene organic inks. The modified MXene nanosheets exhibit hydrophilicity on one side and hydrophobicity on the other. As a result, Janus MXene nanosheets ensure broad dispersibility in polar and nonpolar solvents, which in turn greatly extends the ink shelf life by slowing down the oxidation kinetics. Janus MXene sheets dispersed in toluene at room temperature remain at 90% of the initial solids after 1 month of storage. Janus surface engineering on MXene flakes guarantees the straightforward formation of uniform yet firm, large-area coatings on hydrophilic or hydrophobic substrates. These coatings demonstrate improved photothermal properties and chemical stability as well as good electromagnetic interference shielding performance. This strategy provides a simple and cost-effective way to promote the performance of MXene electronics in a variety of applications.

9.
ACS Nano ; 17(22): 22755-22765, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37931128

RESUMO

Separator engineering is a promising route to designing advanced lithium (Li) metal anodes for high-performance Li metal batteries (LMBs). Conventional separators are incapable of regulating the Li+ diffusion across the solid electrolyte interphase (SEI), leading to severe dendritic deposition. To address this issue, a polypropylene (PP) separator modified by spray coating the Cl-terminated titanium carbonitride MXene ink is designed (PP@Ti3CNCl2). The lithiophilic MXene provides excellent electrolyte wettability and low Li+ diffusion barriers, finally enhancing the Li+ diffusion kinetics of excessively stable SEI. The X-ray photoelectron spectroscopy depth profiling as well as cryo-transmission electron microscopy reveals that a gradient SEI hierarchy with evenly distributed LiF and LiCl is spontaneously formed during the electrochemical process. As a consequence, PP@Ti3CNCl2 delivers a high Coulombic efficiency (99.15%) coupled with a prolonged lifespan of over 5500 h in half cells and 3100 cycles at 2 C in full cells. This work offers an effective strategy for constructing dendrite-free and Li+ permeable interfaces toward high-energy-density LMBs.

10.
Adv Mater ; 34(4): e2103660, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34693561

RESUMO

Processing 2D materials into printable or coatable inks for the fabrication of functional devices has proven to be quite difficult. Additives are often used in large concentrations to address the processing challenges, but they drastically degrade the electronic properties of the materials. To remove the additives a high-temperature post-deposition treatment can be used, but this complicates the fabrication process and limits the choice of materials (i.e., no heat-sensitive materials). In this work, by exploiting the unique properties of 2D materials, a universal strategy for the formulation of additive-free inks is developed, in which the roles of the additives are taken over by van der Waals (vdW) interactions. In this new class of inks, which is termed "vdW inks", solvents are dispersed within the interconnected network of 2D materials, minimizing the dispersibility-related limitations on solvent selection. Furthermore, flow behavior of the inks and mechanical properties of the resultant films are mainly controlled by the interflake vdW attractions. The structure of the vdW inks, their rheological properties, and film-formation behavior are discussed in detail. Large-scale production and formulation of the vdW inks for major high-throughput printing and coating methods, as well as their application for room-temperature fabrication of functional films/devices are demonstrated.

11.
Nat Commun ; 13(1): 3223, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680851

RESUMO

Wireless technologies-supported printed flexible electronics are crucial for the Internet of Things (IoTs), human-machine interaction, wearable and biomedical applications. However, the challenges to existing printing approaches remain, such as low printing precision, difficulty in conformal printing, complex ink formulations and processes. Here we present a room-temperature direct printing strategy for flexible wireless electronics, where distinct high-performance functional modules (e.g., antennas, micro-supercapacitors, and sensors) can be fabricated with high resolution and further integrated on various flat/curved substrates. The additive-free titanium carbide (Ti3C2Tx) MXene aqueous inks are regulated with large single-layer ratio (>90%) and narrow flake size distribution, offering metallic conductivity (~6, 900 S cm-1) in the ultrafine-printed tracks (3 µm line gap and 0.43% spatial uniformity) without annealing. In particular, we build an all-MXene-printed integrated system capable of wireless communication, energy harvesting, and smart sensing. This work opens a door for high-precision additive manufacturing of printed wireless electronics at room temperature.

12.
Nanoscale Adv ; 3(12): 3502-3512, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36133713

RESUMO

Flexible transparent supercapacitors (FTSCs) are essential for the development of next-generation transparent electronics, however, a significant challenge is to achieve high-areal-capacitance FTSCs without sacrificing optical transparency. Herein, poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-glued MoO3 nanowires anchored on the Ag nanofiber (AgNF) network are employed as FTSC film electrodes, in which the AgNF network provides primary conducting pathways and guarantees rapid electron transport, while wide-bandgap semiconductor MoO3 nanowires glued by the ultrathin PEDOT:PSS layer provide abundant redox-active sites to store energy. Benefiting from the PEDOT:PSS as the conducting glue to promote the connection at the junctions between AgNFs and MoO3 nanowires, the as-prepared AgNFs/MoO3/PEDOT:PSS (AMP) film electrode demonstrates a high transmittance (82.8%) and large areal capacitance (15.7 mF cm-2), and has outperformed all the transparent conductive films known to date. Even after 11 000 charge/discharge cycles, the capacitance still remains at 92.4% of the initial value. The assembled all-solid-state FTSC device delivers an energy density of 0.623 µW h cm-2, a power density of 40 µW cm-2, and excellent mechanical robustness, implying a great potential in high performance FTSCs.

13.
Adv Mater ; 32(17): e2000716, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32196130

RESUMO

Printed functional conductive inks have triggered scalable production of smart electronics such as energy-storage devices, antennas, wearable electronics, etc. Of particular interest are highly conductive-additive-free inks devoid of costly postdeposition treatments to eliminate sacrificial components. Due to the high filler concentration required, formulation of such waste-free inks has proven quite challenging. Here, additive-free, 2D titanium carbide MXene aqueous inks with appropriate rheological properties for scalable screen printing are demonstrated. Importantly, the inks consist essentially of the sediments of unetched precursor and multilayered MXene, which are usually discarded after delamination. Screen-printed structures are presented on paper with high resolution and spatial uniformity, including micro-supercapacitors, conductive tracks, integrated circuit paths, and others. It is revealed that the delaminated nanosheets among the layered particles function as efficient conductive binders, maintaining the mechanical integrity and thus the metallic conductive network. The areal capacitance (158 mF cm-2 ) and energy density (1.64 µWh cm-2 ) of the printed micro-supercapacitors are much superior to other devices based on MXene or graphene. The ink formulation strategy of "turning trash into treasure" for screen printing highlights the potential of waste-free MXene sediment printing for scalable and sustainable production of next-generation wearable smart electronics.

14.
Adv Sci (Weinh) ; 7(15): 2000979, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775169

RESUMO

Designing lightweight nanostructured aerogels for high-performance electromagnetic interference (EMI) shielding is crucial yet challenging. Ultrathin cellulose nanofibrils (CNFs) are employed for assisting in building ultralow-density, robust, and highly flexible transition metal carbides and nitrides (MXenes) aerogels with oriented biomimetic cell walls. A significant influence of the angles between oriented cell walls and the incident EM wave electric field direction on the EMI shielding performance is revealed, providing an intriguing microstructure design strategy. MXene "bricks" bonded by CNF "mortars" of the nacre-like cell walls induce high mechanical strength, electrical conductivity, and interfacial polarization, yielding the resultant MXene/CNF aerogels an ultrahigh EMI shielding performance. The EMI shielding effectiveness (SE) of the aerogels reaches 74.6 or 35.5 dB at a density of merely 8.0 or 1.5 mg cm-3, respectively. The normalized surface specific SE is up to 189 400 dB cm2 g-1, significantly exceeding that of other EMI shielding materials reported so far.

15.
Adv Mater ; 32(29): e1906697, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32484267

RESUMO

MXenes are emerging rapidly as a new family of multifunctional nanomaterials with prospective applications rivaling that of graphenes. Herein, a timely account of the design and performance evaluation of MXene-based membranes is provided. First, the preparation and physicochemical characteristics of MXenes are outlined, with a focus on exfoliation, dispersion stability, and processability, which are crucial factors for membrane fabrication. Then, different formats of MXene-based membranes in the literature are introduced, comprising pristine or intercalated nanolaminates and polymer-based nanocomposites. Next, the major membrane processes so far pursued by MXenes are evaluated, covering gas separation, wastewater treatment, desalination, and organic solvent purification. The potential utility of MXenes in phase inversion and interfacial polymerization, as well as layer-by-layer assembly for the preparation of nanocomposite membranes, is also critically discussed. Looking forward, exploiting the high electrical conductivity and catalytic activity of certain MXenes is put into perspective for niche applications that are not easily achievable by other nanomaterials. Furthermore, the benefits of simulation/modeling approaches for designing MXene-based membranes are exemplified. Overall, critical insights are provided for materials science and membrane communities to navigate better while exploring the potential of MXenes for developing advanced separation membranes.

16.
ACS Nano ; 14(7): 8678-8688, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32530269

RESUMO

Alkali metals are ideal anodes for high-energy-density rechargeable batteries, while seriously hampered by limited cycle life and low areal capacities. To this end, rationally designed frameworks for dendrite-free and volume-changeless alkali-metal deposition at both high current densities and capacities are urgently required. Herein, a general 3D conductive Ti3C2TX MXene-melamine foam (MXene-MF) is demonstrated as an elastic scaffold for dendrite-free, high-areal-capacity alkali anodes (Li, Na, K). Owing to the lithiophilic nature of F-terminated MXene, conductive macroporous network, and excellent mechanical toughness, the constructed MXene-MF synchronously achieves a high current density of 50 mA cm-2 for Li plating, high areal capacity (50 mAh cm-2) with high Coulombic efficiency (99%), and long lifetime (3800 h), surpassing the Li anodes reported recently. Meanwhile, MXene-MF shows flat voltage profiles for 720 h at 10 mA cm-2 for the Na anode and 800 h at 5 mA cm-2 for the K anode, indicative of the wide applicability. Notably, the high current density of 20 mA cm-2 for 20 mAh cm-2 for the Na anode, accompanying good recyclability was rarely achieved before. When coupled with sulfur or Na3V2(PO4)3 cathodes, the assembled MXene-MF alkali (Li, Na)-based full batteries showcase enhanced rate capability and cycling stability, demonstrating the potential of MXene-MF for advanced alkali-metal batteries.

17.
ACS Nano ; 13(12): 14308-14318, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31751116

RESUMO

Li-metal anode is widely acknowledged as the ideal anode for high-energy-density batteries, but seriously hindered by the uncontrollable dendrite growth and infinite volume change. Toward this goal, suitable stable scaffolds for dendrite-free Li anodes with large current density (>5 mA cm-2) and high Li loading (>90%) are highly in demand. Herein, a conductive and lithiophilic three-dimensional (3D) MXene/graphene (MG) framework is demonstrated for a dendrite-free Li-metal anode. Benefiting from its high surface area (259 m2 g-1) and lightweight nature with uniformly dispersed lithiophilic MXene nanosheets as Li nucleation sites, the as-formed 3D MG scaffold showcases an ultrahigh Li content (∼92% of the theoretical capacity), as well as strong capabilities in suppressing the Li-dendrite formation and accommodating the volume changes. Consequently, the MG-based electrode exhibits high Coulombic efficiencies (∼99%) with a record lifespan up to 2700 h and is stable for 230 cycles at an ultrahigh current density of 20 mA cm-2. When coupled with Li4Ti5O12 or sulfur, the MG-Li/Li4Ti5O12 full-cell offers an enhanced capacity of 142 mAh g-1 after 450 cycles, while the MG-Li/sulfur cell delivers an improved rate performance, implying the great potential of this 3D MG framework for building long-lifetime, high-energy-density batteries.

18.
ACS Appl Mater Interfaces ; 11(9): 8992-9001, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30694040

RESUMO

Developing high-performance, flexible, transparent supercapacitors for wearable electronics represents an important challenge, as it requires active materials to be sufficiently transparent without compromising energy storage. Here, we manipulate the morphology of the active materials and the junctions on the current collector to achieve optimum electronic/ionic transport kinetics. Two-dimensional Co(OH)2 nanosheets with single or two layers were vertically aligned onto a modified Ag nanowires (AgNWs) network using an electrochemical deposition-UV irradiation approach. The metallic AgNWs network endows high transparency while minimizing the contact resistance with the pseudocapacitive Co(OH)2 nanosheets. The Co(OH)2 nanosheets self-assembled into a three-dimensional array, which is beneficial for the fast ion movements. The rational materials design greatly boosts the electrochemical performance of the hybrid network, including an ultrahigh areal capacitance up to 3108 µC cm-2 (5180 µF cm-2) coupled with long cycle life (20 000 cycles). As a prototype device, the symmetric supercapacitor well combines high energy/power density and excellent mechanical flexibility and long-term performance, suggesting a promising application for the next-generation wearable electronics.

19.
Nat Commun ; 10(1): 849, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787274

RESUMO

The ever-increasing demands for advanced lithium-ion batteries have greatly stimulated the quest for robust electrodes with a high areal capacity. Producing thick electrodes from a high-performance active material would maximize this parameter. However, above a critical thickness, solution-processed films typically encounter electrical/mechanical problems, limiting the achievable areal capacity and rate performance as a result. Herein, we show that two-dimensional titanium carbide or carbonitride nanosheets, known as MXenes, can be used as a conductive binder for silicon electrodes produced by a simple and scalable slurry-casting technique without the need of any other additives. The nanosheets form a continuous metallic network, enable fast charge transport and provide good mechanical reinforcement for the thick electrode (up to 450 µm). Consequently, very high areal capacity anodes (up to 23.3 mAh cm-2) have been demonstrated.

20.
Nat Commun ; 10(1): 1795, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996224

RESUMO

Direct printing of functional inks is critical for applications in diverse areas including electrochemical energy storage, smart electronics and healthcare. However, the available printable ink formulations are far from ideal. Either surfactants/additives are typically involved or the ink concentration is low, which add complexity to the manufacturing and compromises the printing resolution. Here, we demonstrate two types of two-dimensional titanium carbide (Ti3C2Tx) MXene inks, aqueous and organic in the absence of any additive or binary-solvent systems, for extrusion printing and inkjet printing, respectively. We show examples of all-MXene-printed structures, such as micro-supercapacitors, conductive tracks and ohmic resistors on untreated plastic and paper substrates, with high printing resolution and spatial uniformity. The volumetric capacitance and energy density of the all-MXene-printed micro-supercapacitors are orders of magnitude greater than existing inkjet/extrusion-printed active materials. The versatile direct-ink-printing technique highlights the promise of additive-free MXene inks for scalable fabrication of easy-to-integrate components of printable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA