Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(23): 8898-8905, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37249570

RESUMO

Label-free electrochemical visualization of cancer cell apoptosis is essential for cancer therapies. In this work, we proposed a noninvasive imaging method using a light-addressable electrochemical sensor (LAES) for label-free imaging of drug-induced tumor cell apoptosis. The dynamic AC photocurrent changes on MCF-7 human breast adenocarcinoma cells after inducing by tamoxifen were imaged. And the reasons for photocurrent changes on the cells were explored by monitoring the changes in the ζ potentials of cells and Faradic impedance. The results demonstrated that the AC photocurrent on apoptotic MCF-7 cells increased, and the apoptosis degree of each cell was heterogeneous. Moreover, the AC photocurrent increase was attributed to the increased cell membrane permeability and the increased gap between the cell basal surface and the substrate caused by cell apoptosis. This study provides a brand new approach for label-free visualizing cell apoptosis heterogeneity, which has great potential in apoptosis-associated drug screening or drug efficacy evaluation.


Assuntos
Apoptose , Neoplasias da Mama , Humanos , Feminino , Tamoxifeno/farmacologia , Neoplasias da Mama/patologia , Células MCF-7
2.
Anal Chem ; 92(14): 9739-9744, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32437169

RESUMO

A new photoelectrochemical imaging method termed scanning electrochemical photometric sensor (SEPS) is proposed in this work. It was derived from light-addressable potentiometric sensor (LAPS) and scanning photoinduced impedance microscopy (SPIM) using a front-side laser illumination at a field-effect structure. When the laser beam scans across the sensor substrate, local photocurrent changes at inversion due to the light absorption of analytes can be recorded. It will be shown that SEPS could be used for label-free living cell imaging with micro-resolution as well as real-time quantitative absorption analysis, which would broaden the applications of traditional LAPS/SPIM from potentiometric/impedance measurements to local optical analysis.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Análise de Célula Única/métodos , Escherichia coli
3.
Anal Chem ; 91(9): 5896-5903, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30986350

RESUMO

The surface charge of cells affects cell signaling, cell metabolic processes, adherence to surfaces, and cell proliferation. Our understanding of the role of membrane charges is limited due to the inability to observe changes without interfering, chemically or physically, with the cell or its membrane. Here, we report that a photoelectrochemical imaging system (PEIS) based on label-free ac-photocurrent measurements at indium tin oxide (ITO) coated glass substrates can be used to map the basal surface charge of single live cells under physiological conditions. Cells were cultured on the ITO substrate. Photocurrent images were generated by scanning a focused, modulated laser beam across the back of the ITO coated glass substrate under an applied bias voltage. The photocurrent was shown to be sensitive to the negative surface charge of the substrate facing, basal side of a single living cell-an area not accessible to other electrochemical or electrophysiological imaging techniques. The PEIS was used to monitor the lysis of mesenchymal stem cells.


Assuntos
Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Vidro/química , Ouro/química , Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas/química , Compostos de Estanho/química , Animais , Células Cultivadas , Eletrodos , Humanos , Luz , Neuroblastoma/patologia , Ratos , Propriedades de Superfície
4.
Biomacromolecules ; 20(7): 2506-2514, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31244015

RESUMO

Inflammatory conditions are frequently accompanied by increased levels of active proteases, and there is rising interest in methods for their detection to monitor inflammation in a point of care setting. In this work, new sensor materials for disposable single-step protease biosensors based on poly(2-oxazoline) hydrogels cross-linked with a protease-specific cleavable peptide are described. The performance of the sensor material was assessed targeting the detection of matrix metalloproteinase-9 (MMP-9), a protease that has been shown to be an indicator of inflammation in multiple sclerosis and other inflammatory conditions. Films of the hydrogel were formed on gold-coated quartz crystals using thiol-ene click chemistry, and the cross-link density was optimized. The degradation rate of the hydrogel was monitored using a quartz crystal microbalance (QCM) and showed a strong dependence on the MMP-9 concentration. A concentration range of 0-160 nM of MMP-9 was investigated, and a lower limit of detection of 10 nM MMP-9 was determined.


Assuntos
Técnicas Biossensoriais , Metaloproteinase 9 da Matriz/análise , Oxazóis/química , Peptídeos/química , Técnicas de Microbalança de Cristal de Quartzo , Humanos
5.
Sensors (Basel) ; 19(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965649

RESUMO

Peptide cross-linked poly(ethylene glycol) hydrogel has been widely used for drug delivery and tissue engineering. However, the use of this material as a biosensor for the detection of collagenase has not been explored. Proteases play a key role in the pathology of diseases such as rheumatoid arthritis and osteoarthritis. The detection of this class of enzyme using the degradable hydrogel film format is promising as a point-of-care device for disease monitoring. In this study, a protease biosensor was developed based on the degradation of a peptide cross-linked poly(ethylene glycol) hydrogel film and demonstrated for the detection of collagenase. The hydrogel was deposited on gold-coated quartz crystals, and their degradation in the presence of collagenase was monitored using a quartz crystal microbalance (QCM). The biosensor was shown to respond to concentrations between 2 and 2000 nM in less than 10 min with a lower detection limit of 2 nM.


Assuntos
Técnicas Biossensoriais , Colagenases/isolamento & purificação , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Peptídeos/química , Colagenases/química , Reagentes de Ligações Cruzadas/química , Limite de Detecção , Polietilenoglicóis/química , Técnicas de Microbalança de Cristal de Quartzo
6.
Anal Chem ; 90(14): 8708-8715, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29932632

RESUMO

Light-addressable potentiometric sensors (LAPS) are of great interest in bioimaging applications such as the monitoring of concentrations in microfluidic channels or the investigation of metabolic and signaling events in living cells. By measuring the photocurrents at electrolyte-insulator-semiconductor (EIS) and electrolyte-semiconductor structures, LAPS can produce spatiotemporal images of chemical or biological analytes, electrical potentials and impedance. However, its commercial applications are often restricted by their limited AC photocurrents and resolution of LAPS images. Herein, for the first time, the use of 1D semiconducting oxides in the form of ZnO nanorods for LAPS imaging is explored to solve this issue. A significantly increased AC photocurrent with enhanced image resolution has been achieved based on ZnO nanorods, with a photocurrent of 45.7 ± 0.1 nA at a light intensity of 0.05 mW, a lateral resolution as low as 3.0 µm as demonstrated by images of a PMMA dot on ZnO nanorods and a pH sensitivity of 53 mV/pH. The suitability of the device for bioanalysis and bioimaging was demonstrated by monitoring the degradation of a thin poly(ester amide) film with the enzyme α-chymotrypsin using LAPS. This simple and robust route to fabricate LAPS substrates with excellent performance would provide tremendous opportunities for bioimaging.


Assuntos
Técnicas Biossensoriais/instrumentação , Quimotripsina/metabolismo , Nanotubos/química , Poliésteres/metabolismo , Potenciometria/instrumentação , Óxido de Zinco/química , Animais , Bovinos , Desenho de Equipamento , Lasers , Luz , Nanotubos/ultraestrutura , Semicondutores
7.
Anal Chem ; 89(15): 8129-8133, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28678477

RESUMO

Light-addressable potentiometric sensors (LAPS) and scanning photo-induced impedance microscopy (SPIM) use photocurrent measurements for spatiotemporal imaging of ion concentrations, electrical potentials, and impedance. In this work, ITO-coated glass was confirmed to produce photocurrents at anodic potentials with 405 nm diode laser illumination. Therefore, it was developed as a low cost and robust substrate material for LAPS and SPIM imaging compared to traditional expensive ultrathin Si substrates. ITO showed good ac photocurrent and pH response without surface modification and insulator. Local photocurrents were produced by scanning a focused laser beam across the sample, which proved the light addressability of ITO-coated glass. With a high-impedance PMMA dot deposited onto the ITO as a model system, a lateral resolution of about 2.3 µm was achieved.

8.
Langmuir ; 33(13): 3170-3177, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28285531

RESUMO

A copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) reaction combined with microcontact printing was used successfully to pattern alkyne-terminated self-assembled organic monolayer-modified silicon surfaces. Despite the absence of a copper peak in X-ray photoelectron spectra, copper contamination was found and visualized using light-addressable potentiometric sensors (LAPS) and scanning photo-induced impedance microscopy (SPIM) after the "click"-modified silicon surfaces were rinsed with hydrochloric acid (HCl) solution, which was frequently used to remove copper residues in the past. Even cleaning with an ethylenediaminetetraacetic acid (EDTA) solution did not remove the copper residue completely. Different strategies for avoiding copper contamination, including the use of bulky chelators for the copper(I) catalyst and rinsing with different reagents, were tested. Only cleaning of the silicon surfaces with an EDTA solution containing trifluoroacetic acid (TFA) after the click modification proved to be an effective method as confirmed by LAPS and SPIM results, which showed the expected potential shift due to the surface charge introduced by functional groups in the monolayer and allowed, for the first time, imaging the impedance of an organic monolayer.

9.
Analyst ; 141(22): 6338-6343, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27722487

RESUMO

Phytochemicals are essential secondary plant metabolites which play important roles in the areas of plant biochemistry, pharmacy and medical science because of their significant bioactivities. Conventional analysis of phytochemicals in plants needs a complex combination of different extraction and separation steps. Here a simple and universal method for profiling phytochemicals in a single plant cell was demonstrated based on high performance liquid chromatography-mass spectrometry. Single purple and colorless cell samples (about 15 µm in size) found in the outer layer of a young stem of Forsythia suspensa, just inside the cuticles were collected and transferred by glass micropipettes from cell monolayers. At least 30 peaks were separated and detected, and 24 of these peaks were identified. Apart from several common plant metabolites in high abundance, like polysaccharides and amino acids, 9 phytochemicals that have special bioactivities in this plant and in medical treatment were successfully detected. Phytochemical differences between these two kinds of cells were also distinguished which was applied to investigate the heterogeneity of cells from different parts of plants and the dependency of important plant bioprocesses on phytochemical changes.

10.
Anal Chem ; 86(19): 9489-95, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25211349

RESUMO

Herein, G-quadruplex sequence was found to significantly decrease the diffusion current of methylene blue (MB) in homogeneous solution for the first time. Electrochemical methods combined with circular dichroism spectroscopy and UV-vis spectroscopy were utilized to systematically explore the interaction between MB and an artificial G-quadruplex sequence, EAD2. The interaction of MB and EAD2 (the binding constant, K ≈ 1.3 × 10(6) M(-1)) was stronger than that of MB and double-stranded DNA (dsDNA) (K ≈ 2.2 × 10(5) M(-1)), and the binding stoichiometry (n) of EAD2/MB complex was calculated to be 1.0 according to the electrochemical titration curve combined with Scatchard analysis. MB was proved to stabilize the G-quadruplex structure of EAD2 and showed a competitive binding to G-quadruplex in the presence of hemin. EAD2 might mainly interact with MB, a positive ligand of G-quadruplex, through the end-stacking with π-system of the guanine quartet, which was quite different from the binding mechanism of dsDNA with MB by intercalation. A novel signal read-out mode based on the strong affinity between G-quadruplex and MB coupling with aptamer/G-quadruplex hairpin structure was successfully implemented in cocaine detection with high specificity. G-quadruplex/MB complex will function as a promising electrochemical indicator for constructing homogeneous label-free electrochemical biosensors, especially in the field of simple, rapid, and noninvasive biochemical assays.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Cocaína/isolamento & purificação , Quadruplex G , Azul de Metileno/química , Ligação Competitiva , DNA/química , Técnicas Eletroquímicas , Hemina/química , Soluções
11.
Biosens Bioelectron ; 253: 116194, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38467100

RESUMO

The multiplexed detection of metabolites in parallel within a single biosensor plate is sufficiently valuable but also challenging. Herein, we combine the inherent light addressability of silicon with the high selectivity of enzymes, for the construction of multiplexed photoelectrochemical enzymatic biosensors. To conduct a stable electrochemistry and reagentless biosensing on silicon, a new strategy involving the immobilization of both redox mediators and enzymes using an amide bond-based hydrogel membrane was proposed. The membrane characterization results demonstrated a covalent coupling of ferrocene mediator to hydrogel, in which the mediator acted as not only a signal generator but also a renewable sacrifice agent. By adding corresponding enzymes on different spots of hydrogel membrane modified silicon and recording local photocurrents with a moveable light pointer, this biosensor setup was used successfully to detect multiple metabolites, such as lactate, glucose, and sarcosine, with good analytical performances. The limits of detection of glucose, sarcosine and lactate were found to be 179 µM, 16 µM, and 780 µM with the linear ranges of 0.5-2.5 mM, 0.3-1.5 mM, and 1.0-3.0 mM, respectively. We believe this proof-of-concept study provides a simple and rapid one-step immobilization approach for the fabrication of reagentless enzymatic assays with silicon-based light-addressable electrochemistry.


Assuntos
Técnicas Biossensoriais , Silício , Eletroquímica/métodos , Sarcosina , Técnicas Biossensoriais/métodos , Hidrogéis , Lactatos , Glucose
12.
Anal Chem ; 85(4): 2032-6, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23331083

RESUMO

In this study, a simple miniaturized microliter electrochemical device was constructed using a disposable micropipet tip and a reproducible carbon fiber ultramicroelectrode. The novel electrochemical device set the electrochemical reaction in a micropipet tip containing an ultramicroelectrode. We investigated the feasibility of the designed electrochemical device by cyclic voltammetric measurements of redox probe. Its application in an immobilization-free enzyme electrochemical biosensor was also evaluated. Horseradish peroxidase and glucose oxidase were selected to test sensor feasibility. Our results showed that the micropipet tip-based electrochemical device could detect low substrate or enzyme concentration or enzymatic reaction rate. The electrochemical device was applied to analyze the glucose content in human blood samples. With the advantages of low cost, easy operation, rapid detection and high reproducibility, this design provides a new approach in immobilization-free enzyme biosensor construction. Integrated with an ultramicroelectrode, our micropipet tip-based electrochemical device could replace most normal electrodes and electrochemical cells in common laboratories for electroanalysis.


Assuntos
Técnicas Biossensoriais , Glicemia/análise , Técnicas Eletroquímicas/métodos , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Técnicas Eletroquímicas/instrumentação , Eletrodos , Enzimas Imobilizadas/metabolismo , Humanos , Miniaturização , Oxirredução , Especificidade por Substrato
13.
Anal Chem ; 85(19): 9378-82, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23998357

RESUMO

We first developed a label-free and immobilization-free homogeneous electrochemical aptasensor, which combined a smart functional DNA hairpin and a designed miniaturized electrochemical device. Cocaine was chosen as a model target. The anticocaine aptamer and peroxidase-mimicking DNAzyme were integrated into one single-stranded DNA hairpin. Both aptamer and G-quadruplex were elaborately blocked by the stem region. The conformation switching induced by the affinity interaction between aptamer and cocaine released G-quadruplex part and turned on DNAzyme activity. The designed electrochemical device, constructed by a disposable micropipet tip and a reproducible carbon fiber ultramicroelectrode, was applied to the detection of homogeneous DNAzyme catalytic activity at the microliter level. The aptasensor realized the quantification of cocaine ranging from 1 to 500 µM with high specificity. The clever combination of the functional DNA hairpin and the novel device achieved an absolutely label-free electrochemical aptasensor, which showed excellent performance like low cost, easy operation, rapid detection, and high repeatability.


Assuntos
Aptâmeros de Nucleotídeos/química , Cocaína/análise , DNA/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/metabolismo , Cocaína/metabolismo , DNA/metabolismo , DNA Catalítico/química , DNA Catalítico/metabolismo , Ativação Enzimática , Quadruplex G
14.
Talanta ; 254: 124124, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459873

RESUMO

The application of silicon (Si) substrate as photoelectrode in light-addressable electrochemistry (LAE) is severely limited due to its ease of surface oxidation. The resulted silicon oxide (SiOx) layer is electronically insulating and blocks charge transfer between the electrode and electrolyte. Keeping the Si from being oxidized is a key challenge for its practical use as a semiconductor electrode. In this work, we find that by developing a thin layer of polydopamine film on the surface of Si substrate, followed by carbonization at 550 °C, the natural oxidation of Si substrate can be successfully forestalled. When applied as an electrode, it is further found that the carbonized polydopamine (cPDA) layer can also prevent anodic oxidation of Si. The cPDA layer-modified Si substrate exhibits good photoelectrochemical performance and great stability, with no obvious signal decrease under ambient environment over 32 h. Our work here provides a new modification strategy for anti-oxidation of Si substrate and it is promising in the application of light-addressable electrochemical sensing and imaging.


Assuntos
Indóis , Dióxido de Silício , Eletrodos , Oxirredução
15.
ACS Sens ; 7(7): 1791-1807, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35762514

RESUMO

The light-addressable electrochemical sensor (LAES) is a recently emerged bioanalysis technique combining electrochemistry with the photoelectric effect in a semiconductor. In an LAES, a semiconductor substrate is illuminated locally to generate charge carriers in a well-defined area, thereby confining the electrochemical process to a target site. Benefiting from the unique light addressability, an LAES can not only detect multiple analytes in parallel within a single sensor plate but also act as a bio(chemical) imaging sensor to visualize the two-dimensional distribution of specific analytes. An LAES usually has three working modes: a potentiometric mode using light-addressable potentiometric sensors (LAPS) and an impedance mode using scanning photoinduced impedance microscopy (SPIM), while an amperometric mode refers to light-addressable electrochemistry (LAE) and photoelectrochemical (PEC) sensing. In this review, we describe the detection principles of each mode of LAESs and the concept of light addressability. In addition, we highlight the recent progress and advance of LAESs in spatial resolution, sensor system design, multiplexed detection, and bio(chemical) imaging applications. An outlook on current research challenges and future prospects is also presented.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Eletroquímica , Potenciometria , Semicondutores
16.
Anal Chim Acta ; 1224: 340237, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998993

RESUMO

Visualization of the electrochemical reaction is essential for comprehensively understanding the electrochemical reaction mechanism and precisely characterizing dynamic electrochemical processes. Herein, we propose a simple device that combines light-addressable potentiometric sensor (LAPS) imaging and microelectrodes to serve as a general electroanalysis platform for the label-free sensing and imaging of electrochemical reactions. In this device, two microelectrodes are assembled on the LAPS chip. Electrochemical reactions occurring on the microelectrodes can be qualitatively and quantitatively observed and visualized using a LAPS chip that is sensitive to the reaction products. Validations were performed to monitor the effect of water electrolysis and potassium ferrocyanide oxidation surrounding the microelectrodes, respectively. We believe that this study will provide an excellent platform for the visualization and monitoring of electrochemical reactions and broaden the application scope of LAPS imaging to a general electroanalysis tool that is widely applicable in several fields.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Microeletrodos , Oxirredução , Potenciometria
17.
Front Chem ; 9: 753253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805092

RESUMO

A novel homogeneous label-free electrochemical biosensor using G-triplex/methylene blue (G3/MB) complex as the signal generator together with an amplification assisted by the λ-exonuclease (λ-Exo) has been successfully constructed for ultrasensitive microRNA (miRNA) detection. An integrated microelectrode was designed to realize the miniaturization of the homogeneous electrochemical assay. Taking advantage of G3, that can specifically bind with MB and decrease its diffusion current, a single-stranded functional DNA hairpin structure was designed as the bio-recognition probe. The probe consisted of G3, eight bases to block G3, and the complementary sequences of the target miRNA. Here we chose miRNA141-a potentially diagnostic biomarker of prostate cancer as the model target. The presence of miRNA141 could hybridize with the probe DNA to form a double-stranded structure with a 5'-phosphorylated terminus. Then λ-Exo was adopted to digest mononucleotides from the 5'-end, leading to the release of G3 part and miRNA141. The released miRNA could hybridize with another probe to trigger the cycling process, while the released G3 could therefore interact with MB to cause a detectable decrease of diffusion current. The proposed strategy showed a low detection limit of 16 fM and an excellent specificity to discriminate single-base mismatches. Furthermore, this sensor was applied to detect miRNA141 from diluted human serum samples, indicating that it has great potential in the application of nucleic acid detection in real samples.

18.
Anal Chim Acta ; 1158: 338415, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863408

RESUMO

A miniaturized platform combining integrated microelectrode (IME) and functional nucleic acids was developed for homogeneous label-free electrochemical biosensing. IME was constructed with a carbon fiber microelectrode and a platinum wire in a θ type glass tube as a two-electrode system for electrochemical monitoring at microliter level. A newly reported G-triplex/methylene blue (G3/MB) complex was used as the signal generator in the homogeneous label-free electrochemical biosensor. G3 has strong affinity with MB and it can cause significant decrease of the diffusion current of MB after binding. Melamine was chosen as the model target. Since melamine can interact with nucleobase thymine (T) to form T-melamine-T structure through complementary hydrogen bonds, a single-strand functional DNA hairpin structure with poly T and G3 elaborately blocked via base pairing was designed. The presence of melamine can trigger the conformation switching of the DNA hairpin to release the G3. The released G3 combined with MB could therefore change the diffusion current, leading to a simple and rapid detection of melamine. The combination of functional DNA hairpin as target recognition element, G3/MB as signal generator, and IME as transducer provided a "Mix and Measure" miniaturized platform for the construction of homogeneous label-free electrochemical biosensors.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , DNA , Técnicas Eletroquímicas , Microeletrodos
19.
ACS Sens ; 6(4): 1636-1642, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33832225

RESUMO

Here, we describe a new photoelectrochemical imaging method termed light-addressable square wave voltammetry (LASWV). It measures local SWV currents at an unstructured electrolyte/insulator/semiconductor (EIS) field-effect substrate by illuminating and addressing the substrate with an intensity-constant laser. Due to the continuous generation of charge carriers in the light-irradiated semiconductor, the drift and diffusion of photoinjected carriers within the semiconductor bulk would slow down the equilibrium processes of charge and discharge in one potential pulse cycle. Therefore, even though SWV is sampled at the end of the direct and reverse pulses to reject capacitive currents, in our approach, photoinduced capacitive current can still be detected as an effective sensory signal. The obtained current-potential (I-V) curve shows a typical shape corresponding to the accumulation, depletion, and inversion regions of field-effect devices. We demonstrated that LASWV can be used as a field-effect chemical sensor to measure the solution pH and monitor enzymatic reactions. More importantly, since the charge carriers are only generated in the illuminated area, the laser spot in the device can be used as a virtual probe to record local electrochemical properties such as impedance with microresolution.


Assuntos
Técnicas Biossensoriais , Impedância Elétrica , Eletrólitos , Luz , Semicondutores
20.
Biosens Bioelectron ; 180: 113121, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33706156

RESUMO

Photoelectrochemical imaging has great potential in the label-free investigation of cellular processes. Herein, we report a new fast photoelectrochemical imaging system (PEIS) for DC photocurrent imaging of live cells, which combines high speed with excellent lateral resolution and high photocurrent stability, which are all crucial for studying dynamic cellular processes. An analog micromirror was adopted to raster the sensor substrate, enabling high-speed imaging. α-Fe2O3 (hematite) thin films synthesized via electrodeposition were used as a robust substrate with high photocurrent and good spatial resolution. The capabilities of this system were demonstrated by monitoring cell responses to permeabilization with Triton X-100. The ability to carry out dynamic functional imaging of multiple cells simultaneously provides improved confidence in the data than could be achieved with the slower electrochemical single-cell imaging techniques described previously. When monitoring pH changes, the PEIS can achieve frame rates of 8 frames per second.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA