Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(6): 4796-4813, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37367054

RESUMO

Salinity is a major factor limiting rice productivity, and developing salt-tolerant (ST) varieties is the most efficient approach. Seventy-eight ST introgression lines (ILs), including nine promising lines with improved ST and yield potential (YP), were developed from four BC2F4 populations from inter-subspecific crosses between an elite Geng (japonica) recipient and four Xian (indica) donors at the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. Genome-wide characterization of donor introgression identified 35 ST QTLs, 25 of which harbor 38 cloned ST genes as the most likely QTL candidates. Thirty-four are Xian-Geng differentiated ones with the donor (Xian) alleles associated with ST, suggesting differentiated responses to salt stress were one of the major phenotypic differences between the two subspecies. At least eight ST QTLs and many others affecting yield traits were identified under salt/non-stress conditions. Our results indicated that the Xian gene pool contains rich 'hidden' genetic variation for developing superior Geng varieties with improved ST and YP, which could be efficiently exploited by selective introgression. The developed ST ILs and their genetic information on the donor alleles for ST and yield traits would provide a useful platform for developing superior ST and high-yield Geng varieties through breeding by design in the future.

2.
Curr Issues Mol Biol ; 44(12): 6404-6427, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36547098

RESUMO

Glutamate receptors (GLR) are widely present in animals and plants, playing essential roles in regulating plant growth, development and stress response. At present, most studies of GLRs in plants are focused on Arabidopsis thaliana, while there have been few studies on rice. In this study, we identified 26 OsGLR genes in rice (Oryza sativa L.). Then, we analyzed the chromosomal location, physical and chemical properties, subcellular location, transmembrane (TM) helices, signal peptides, three-dimensional (3D) structure, cis-acting elements, evolution, chromatin accessibility, population variation, gene-coding sequence haplotype (gcHap) and gene expression under multiple abiotic stress and hormone treatments. The results showed that out of the 26 OsGLR genes, ten genes had the TM domain, signal peptides and similar 3D structures. Most OsGLRs exhibited high tissue specificity in expression under drought stress. In addition, several OsGLR genes were specifically responsive to certain hormones. The favorable gcHap of many OsGLR genes in modern varieties showed obvious differentiation between Xian/indica and Geng/japonica subspecies. This study, for the first time, comprehensively analyzes the OsGLR genes in rice, and provides an important reference for further research on their molecular function.

3.
Front Plant Sci ; 14: 1236251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636110

RESUMO

Glutamate-like receptor (GLR) genes are a group of regulatory genes involved in many physiological processes of plants. With 26 members in the rice genome, the functionalities of most rice GLR genes remain unknown. To facilitate their potential uses in rice improvement, an integrated strategy involving CRISPR-Cas9 mediated knockouts, deep mining and analyses of transcriptomic responses to different abiotic stresses/hormone treatments and gene CDS haplotype (gcHap) diversity in 3,010 rice genomes was taken to understand the functionalities of the 26 rice GLR genes, which led us to two conclusions. First, the expansion of rice GLR genes into a large gene family during evolution had gone through repeated gene duplication events occurred primarily in two large GLR gene clusters on rice chromosomes 9 and 6, which was accompanied with considerable functional differentiation. Secondly, except for two extremely conserved ones (OsGLR6.2 and OsGLR6.3), rich gcHap diversity exists at the remaining GLR genes which played important roles in rice population differentiation and rice improvement, evidenced by their very strong sub-specific and population differentiation, by their differentiated responses to day-length and different abiotic stresses, by the large phenotypic effects of five GLR gene knockout mutants on rice yield traits, by the significant association of major gcHaps at most GLR loci with yield traits, and by the strong genetic bottleneck effects and artificial selection on the gcHap diversity in populations Xian (indica) and Geng (japonica) during modern breeding. Our results suggest the potential values of the natural variation at most rice GLR loci for improving the productivity and tolerances to abiotic stresses. Additional efforts are needed to determine the phenotypic effects of major gcHaps at these GLR loci in order to identify 'favorable' alleles at specific GLR loci specific target traits in specific environments to facilitate their application to rice improvement in future.

4.
Di Yi Jun Yi Da Xue Xue Bao ; 24(7): 827-8, 831, 2004 Jul.
Artigo em Zh | MEDLINE | ID: mdl-15257916

RESUMO

OBJECTIVE: To study the protective mechanism of captopril in diabetic cardiomyopathy by means of DNA microarray. METHODS: Rat models of diabetic cardiomyopathy were divided into test and control groups (n=5), and the rats in the test group were given oral captopril (1.5 mg/kg b.w.) for 15 weeks. DNA microarray was prepared by blotting the PCR products of 4 000 rat cDNAs onto a specially treated glass slides. The probes were prepared by labeling the mRNA from the myocardial tissue of both control and test groups with Cy3-d UTP and Cy5-d UTP separately through reverse transcription. The arrays were then hybridized against the cDNA probes and the fluorescent signals scanned. RESULTS: The expression of genes in relation to fatty acid b oxidation, mitochondrial proton-electron coupling and oxidative phosphorylation, and that of dithiolethione-inducible gene-1 were up-regulated, while the dimethylarginine dimethylaminohydrolase gene expression was obviously lowered in the test group in comparison with those of the control group. CONCLUSION: Captopril may protect the myocardial tissue through improving myocardial energy supply and depressing inflammatory reaction.


Assuntos
Captopril/farmacologia , Cardiomiopatias/metabolismo , Diabetes Mellitus Experimental/complicações , Metabolismo Energético/efeitos dos fármacos , Miocárdio/metabolismo , Animais , Captopril/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA