Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 42(6): 567-579, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38469899

RESUMO

Wnt/ß-catenin signaling plays a crucial role in the migration of mesenchymal stem cells (MSCs). However, our study has revealed an intriguing phenomenon where Dickkopf-1 (DKK1), an inhibitor of Wnt/ß-catenin signaling, promotes MSC migration at certain concentrations ranging from 25 to 100 ng/mL while inhibiting Wnt3a-induced MSC migration at a higher concentration (400 ng/mL). Interestingly, DKK1 consistently inhibited Wnt3a-induced phosphorylation of LRP6 at all concentrations. We further identified cytoskeleton-associated protein 4 (CKAP4), another DKK1 receptor, to be localized on the cell membrane of MSCs. Overexpressing the CRD2 deletion mutant of DKK1 (ΔCRD2), which selectively binds to CKAP4, promoted the accumulation of active ß-catenin (ABC), the phosphorylation of AKT (Ser473) and the migration of MSCs, suggesting that DKK1 may activate Wnt/ß-catenin signaling via the CKAP4/PI3K/AKT cascade. We also investigated the effect of the CKAP4 intracellular domain mutant (CKAP4-P/A) that failed to activate the PI3K/AKT pathway and found that CKAP4-P/A suppressed DKK1 (100 ng/mL)-induced AKT activation, ABC accumulation, and MSC migration. Moreover, CKAP4-P/A significantly weakened the inhibitory effects of DKK1 (400 ng/mL) on Wnt3a-induced MSC migration and Wnt/ß-catenin signaling. Based on these findings, we propose that DKK1 may activate the PI3K/AKT pathway via CKAP4 to balance the inhibitory effect on Wnt/ß-catenin signaling and thus regulate Wnt3a-induced migration of MSCs. Our study reveals a previously unrecognized role of DKK1 in regulating MSC migration, highlighting the importance of CKAP4 and PI3K/AKT pathways in this process.


Assuntos
Movimento Celular , Peptídeos e Proteínas de Sinalização Intercelular , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Via de Sinalização Wnt , Proteína Wnt3A , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Movimento Celular/efeitos dos fármacos , Proteína Wnt3A/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Humanos , Animais , beta Catenina/metabolismo , Fosforilação/efeitos dos fármacos , Camundongos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
2.
Stem Cells ; 41(6): 628-642, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36951300

RESUMO

Migration of mesenchymal stem cells (MSCs) to the site of injury is crucial in transplantation therapy. Studies have shown that cell migration is regulated by the cellular microenvironment and accompanied by changes in cellular metabolism. However, limited information is available about the relationship between MSC migration and cellular metabolism. Here, we show that basic fibroblast growth factor (bFGF) promotes the migration of MSCs with high levels of glycolysis and high expression of hexokinase 2 (HK2), a rate-limiting enzyme in glycolysis. The enhancement of glycolysis via the activation of HK2 expression promoted the migration of MSCs, whereas the inhibition of glycolysis, but not of oxidative phosphorylation, inhibited the bFGF-induced migration of these cells. Furthermore, bFGF enhanced glycolysis by increasing HK2 expression, which consequently promoted ß-catenin accumulation, and the inhibition of glycolysis inhibited the bFGF-induced accumulation of ß-catenin. When the accumulation of glycolytic intermediates was altered, phosphoenolpyruvate was found to be directly involved in the regulation of ß-catenin expression and activation, suggesting that bFGF regulates ß-catenin signaling through glycolytic intermediates. Moreover, transplantation with HK2-overexpressing MSCs significantly improved the effect of cell therapy on skull injury in rats. In conclusion, we propose a novel glycolysis-dependent ß-catenin signaling regulatory mechanism and provide an experimental and theoretical basis for the clinical application of MSCs.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Animais , Ratos , beta Catenina/metabolismo , Movimento Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glicólise , Células-Tronco Mesenquimais/metabolismo , Via de Sinalização Wnt
3.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000343

RESUMO

Mesenchymal stem cells (MSCs) have shown great potential for the treatment of liver injuries, and the therapeutic efficacy greatly depends on their homing to the site of injury. In the present study, we detected significant upregulation of hepatocyte growth factor (HGF) in the serum and liver in mice with acute or chronic liver injury. In vitro study revealed that upregulation of miR-9-5p or miR-221-3p promoted the migration of human MSCs (hMSCs) toward HGF. Moreover, overexpression of miR-9-5p or miR-221-3p promoted hMSC homing to the injured liver and resulted in significantly higher engraftment upon peripheral infusion. hMSCs reduced hepatic necrosis and inflammatory infiltration but showed little effect on extracellular matrix (ECM) deposition. By contrast, hMSCs overexpressing miR-9-5p or miR-221-3p resulted in not only less centrilobular necrosis and venous congestion but also a significant reduction of ECM deposition, leading to obvious improvement of hepatocyte morphology and alleviation of fibrosis around central vein and portal triads. Further studies showed that hMSCs inhibited the activation of hepatic stellate cells (HSCs) but could not decrease the expression of TIMP-1 upon acute injury and the expression of MCP-1 and TIMP-1 upon chronic injury, while hMSCs overexpressing miR-9-5p or miR-221-3p led to further inactivation of HSCs and downregulation of all three fibrogenic and proinflammatory factors TGF-ß, MCP-1, and TIMP-1 upon both acute and chronic injuries. Overexpression of miR-9-5p or miR-221-3p significantly downregulated the expression of α-SMA and Col-1α1 in activated human hepatic stellate cell line LX-2, suggesting that miR-9-5p and miR-221-3p may partially contribute to the alleviation of liver injury by preventing HSC activation and collagen expression, shedding light on improving the therapeutic efficacy of hMSCs via microRNA modification.


Assuntos
Células Estreladas do Fígado , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células Estreladas do Fígado/metabolismo , Animais , Camundongos , Transplante de Células-Tronco Mesenquimais/métodos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/terapia , Doença Hepática Induzida por Substâncias e Drogas/genética , Masculino , Tetracloreto de Carbono/efeitos adversos , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/genética , Camundongos Endogâmicos C57BL , Movimento Celular
4.
Exp Cell Res ; 379(1): 65-72, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30898547

RESUMO

Olfactory ensheathing cells (OECs) are ideal candidates for cell-based therapies aimed at repairing spinal cord injury (SCI). Accurate targeting of OECs to the lesion site is critical to reconstructing the impaired nervous system. However, the key factors guiding the homing of transplanted OECs to the damaged area after SCI are still unclear. Here, we demonstrate that lysophosphatidic acid (LPA) can significantly facilitate the homing of OECs after SCI in rats. First, we found that OECs exhibited a robust chemotaxis response to LPA in vitro, with LPAR1 being predominant receptor expressed on OECs. We further found that ß-catenin signaling plays an important role in LPA-induced OEC migration. Moreover, silencing LPAR1 not only abolished the migration of OECs but also prevented ERK1/2 phosphorylation and ß-catenin activation, suggesting that LPAR1 ligation serves to activate the ERK1/2 and ß-catenin pathways in LPA-induced OEC chemotactic migration. Finally, cell transplantation experiments confirmed that endogenous LPA, which was observed to be produced at the lesion site after SCI in rat, is a key chemokine that facilitates OEC migration to the injury center. Collectively, our data provide a further description of the homing effects of LPA and a mechanism by which transplanted OECs migrate to the injured area after SCI in rats.


Assuntos
Lisofosfolipídeos/metabolismo , Bulbo Olfatório/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Animais , Movimento Celular/fisiologia , Transplante de Células/métodos , Células Cultivadas , Sistema de Sinalização das MAP Quinases/fisiologia , Bulbo Olfatório/citologia , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo , beta Catenina/metabolismo
5.
Cell Tissue Res ; 372(1): 99-114, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29322249

RESUMO

The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.


Assuntos
Movimento Celular/efeitos dos fármacos , Regulação para Baixo , Fator de Crescimento de Hepatócito/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Animais , Sequência de Bases , Regulação para Baixo/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Células HEK293 , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Paxilina/metabolismo , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
6.
Am J Physiol Cell Physiol ; 313(1): C80-C93, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28424168

RESUMO

Mesenchymal stem cells (MSCs) have the potential to treat various tissue damages, but the very limited number of cells that migrate to the damaged region strongly restricts their therapeutic applications. Full understanding of mechanisms regulating MSC migration will help to improve their migration ability and therapeutic effects. Increasing evidence shows that microRNAs play important roles in the regulation of MSC migration. In the present study, we reported that miR-9-5p was upregulated in hepatocyte growth factor -treated MSCs and in MSCs with high migration ability. Overexpression of miR-9-5p promoted MSC migration, whereas inhibition of endogenous miR-9-5p decreased MSC migration. To elucidate the underlying mechanism, we screened the target genes of miR-9-5p and report for the first time that CK1α and GSK3ß, two inhibitors of ß-catenin signaling pathway, were direct targets of miR-9-5p in MSCs and that overexpression of miR-9-5p upregulated ß-catenin signaling pathway. In line with these data, inhibition of ß-catenin signaling pathway by FH535 decreased the miR-9-5p-promoted migration of MSCs, while activation of ß-catenin signaling pathway by LiCl rescued the impaired migration of MSCs triggered by miR-9-5p inhibitor. Furthermore, the formation and distribution of focal adhesions as well as the reorganization of F-actin were affected by the expression of miR-9-5p. Collectively, these results demonstrate that miR-9-5p promotes MSC migration by upregulating ß-catenin signaling pathway, shedding light on the optimization of MSCs for cell replacement therapy through manipulating the expression level of miR-9-5p.


Assuntos
Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , beta Catenina/genética , Actinas/genética , Actinas/metabolismo , Animais , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Cloreto de Lítio/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sulfonamidas/farmacologia , Transfecção , beta Catenina/metabolismo
7.
J Cell Biochem ; 117(6): 1370-83, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26538296

RESUMO

The chemotactic migration of mesenchymal stem cells (MSCs) is fundamental for their use in cell-based therapies, but little is known about the molecular mechanisms that regulate their directed migration. MicroRNAs (miRNAs) participate in the regulation of a large variety of cellular processes. However, their roles in regulating the responses of MSCs to hepatocyte growth factor (HGF) remain elusive. Here, we found that microRNA-221 (miR-221) and microRNA-26b (miR-26b) were upregulated in MSCs subjected to HGF. Overexpression of miR-221 or miR-26b enhanced MSC migration through activation of PI3K/Akt signaling. Phosphatase and tensin homolog deleted on chromosome ten (PTEN) was identified as a potential target of miR-221 and miR-26b; overexpression of miR-221 or miR-26b decreased PTEN expression at both mRNA and protein levels. Overexpression of miR-221 or miR-26b in MSCs increased the phosphorylation of focal adhesion kinase (FAK), a downstream effector of PTEN, which regulates cell migration through assembly and distribution of focal adhesions (FAs), and more dot-like FAs were localized at the periphery of these cells. Altering miR-221 or miR-26b expression influenced the directed migration of MSCs toward HGF. Inhibition of miR-221 or miR-26b suppressed the phosphorylation of Akt and FAK and upregulated PTEN expression, which was partly restored by HGF treatment. Collectively, these results demonstrate that miR-221 and miR-26b participate in regulating the chemotactic response of MSCs toward HGF.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Transdução de Sinais
8.
J Cell Physiol ; 230(11): 2728-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25820249

RESUMO

Mesenchymal stem cells (MSCs) hold great promise in neural regeneration, due to their intrinsic neuronal potential and migratory tropism to damaged nervous tissues. However, the chemotactic signals mediating the migration of MSCs remain poorly understood. Here, we investigated the regulatory roles for focal adhesion kinase (FAK) and Rac1 in vascular endothelial growth factor (VEGF)-stimulated migration of MSCs in neural differentiation. We found that MSCs in various differentiation states show significant different chemotactic responses to VEGF and cells in 24-h preinduction state possess the highest migration speed and efficiency. FAK, as the downstream signaling molecule, is involved in the VEGF-induced migration by regulating the assembly and distribution of focal adhesions (FAs) and reorganization of F-actin. The features of FAs and cytoskeletons and the ability of lamellipodia formation are closely related to the neural differentiation states of MSCs. VEGF promotes FA formation with an asymmetric distribution of FAs and induces the activation of Y397-FAK and Y31/118-paxillin of undifferentiated and 24-h preinduced MSCs in a time-dependent manner. Inhibition of FAK by PF-228 or expressing FAK-Y397F mutant impairs the dynamics of FAs in MSCs during VEGF-induced migration. Furthermore, Rac1 regulates FA formation in a FAK-dependent manner. Overexpression of constitutive activated mutants of Rac1 increases the number of FAs in undifferentiated and 24-h preinduced MSCs, while VEGF-induced increase of FA formation is decreased by inhibiting FAK by PF-228. Collectively, these results demonstrate that FAK and Rac1 signalings coordinately regulate the dynamics of FAs during VEGF-induced migration of MSCs in varying neural differentiation states.


Assuntos
Diferenciação Celular/genética , Movimento Celular/genética , Proteína-Tirosina Quinases de Adesão Focal/biossíntese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas rac1 de Ligação ao GTP/biossíntese , Actinas/metabolismo , Movimento Celular/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Adesões Focais/efeitos dos fármacos , Adesões Focais/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Regeneração Nervosa/genética , Neurônios/citologia , Neurônios/metabolismo , Quinolonas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Sulfonas/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Cell Mol Neurobiol ; 34(7): 1047-58, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25038638

RESUMO

Mesenchymal stem cells (MSCs) are proposed as a promising source for cell-based therapies in neural disease. Although increasing numbers of studies have been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic response and the differentiation status of these cells is still unclear. In the present study, we demonstrated that MSCs in varying neural differentiation states display various chemotactic responses to stromal cell-derived factor-1α (SDF-1α). The chemotactic responses of MSCs under different differentiation stages in response to SDF-1α were analyzed by Boyden chamber, and the results showed that cells of undifferentiation, 24-h preinduction, 5-h induction, and 18-h maintenance states displayed a stronger chemotactic response to SDF-1α, while 48-h maintenance did not. Further, we found that the phosphorylation levels of PI3K/Akt, ERK1/2, SAPK/JNK, and p38MAPK are closely related to the differentiation states of MSCs subjected to SDF-1α, and finally, inhibition of SAPK/JNK signaling significantly attenuates SDF-1α-stimulated transfilter migration of MSCs of undifferentiation, 24-h preinduction, 18-h maintenance, and 48-h maintenance, but not MSCs of 5-h induction. Meanwhile, interference with PI3K/Akt, p38MAPK, or ERK1/2 signaling prevents only cells at certain differentiation state from migrating in response to SDF-1α. Collectively, these results demonstrate that MSCs in varying neural differentiation states have different migratory capacities, thereby illuminating optimization of the therapeutic potential of MSCs to be used for neural regeneration after injury.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quimiotaxia/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Neurônios/citologia , Animais , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
10.
Int Immunopharmacol ; 134: 112255, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744176

RESUMO

Inflammatory bowel disease (IBD) is distinguished by persistent immune-mediated inflammation of the gastrointestinal tract. Previous experimental investigations have shown encouraging outcomes for the use of mesenchymal stem cell (MSC)-based therapy in the treatment of IBD. However, as a primary medication for IBD patients, there is limited information regarding the potential interaction between 5-aminosalicylates (5-ASA) and MSCs. In this present study, we employed the dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model to examine the influence of a combination of MSCs and 5-ASA on the development of UC. The mice were subjected to weight measurement, DAI scoring, assessment of calprotectin expression, and collection of colons for histological examination. The findings revealed that both 5-ASA and MSCs have demonstrated efficacy in the treatment of UC. However, it is noteworthy that 5-ASA exhibits a quicker onset of action, while MSCs demonstrate more advantageous and enduring therapeutic effects. Additionally, the combination of 5-ASA and MSC treatment shows a less favorable efficacy compared to the MSCs alone group. Moreover, our study conducted in vitro revealed that 5-ASA could promote MSC migration, but it could also inhibit MSC proliferation, induce apoptosis, overexpress inflammatory factors (IL-2, IL-12P70, and TNF-α), and reduce the expression of PD-L1 and PD-L2. Furthermore, a significant decrease in the viability of MSCs within the colon was observed as a result of 5-ASA induction. These findings collectively indicate that the use of 5-ASA has the potential to interfere with the therapeutic efficacy of MSC transplantation for the treatment of IBD.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Modelos Animais de Doenças , Mesalamina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Colite Ulcerativa/terapia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colite Ulcerativa/induzido quimicamente , Mesalamina/farmacologia , Mesalamina/uso terapêutico , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Colo/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Células Cultivadas , Masculino , Proliferação de Células/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico
11.
J Cell Physiol ; 228(1): 149-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22570218

RESUMO

Recently, mesenchymal stem cells (MSCs) have been extensively used for cell-based therapies in neuronal degenerative disease. Although much effort has been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic responses and the differentiation status of these cells remains elusive. Here, we report that MSCs in varying neural differentiation states display different chemotactic responses to hepatocyte growth factor (HGF): first, the number of chemotaxing MSCs and the optimal concentrations of HGF that induced the peak migration varied greatly; second, time-lapse video analysis showed that MSCs in certain differentiation state migrated more efficiently toward HGF; third, the phosphorylation levels of Akt, ERK1/2, SAPK/JNK, and p38MAPK were closely related to the differentiation levels of MSCs subjected to HGF; and finally, although inhibition of ERK1/2 signaling significantly attenuated HGF-stimulated transfilter migration of both undifferentiated and differentiating MSCs, abolishment of PI3K/Akt, p38MAPK, or SAPK/JNK signaling only decreased the number of migrated cells in certain differentiation state(s). Blocking of PI3K/Akt or MAPK signaling impaired the migration efficiency and/or speed, the extent of which depends on the cell differentiation states. Meanwhile, F-actin rearrangement, which is essential for MSCs chemotaxis, was induced by HGF, and the time points of cytoskeletal reorganization were different among these cells. Collectively, these results demonstrate that neural differentiation of MSCs influences their chemotactic responses to HGF: MSCs in varying differentiation states possess different migratory capacities, thereby shedding light on optimization of the therapeutic potential of MSCs to be employed for neural regeneration after injury.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento de Hepatócito/farmacologia , Células-Tronco Mesenquimais/citologia , Neurônios/citologia , Animais , Células da Medula Óssea/citologia , Movimento Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Ratos , Ratos Sprague-Dawley
12.
J Cell Biochem ; 114(8): 1744-59, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23444112

RESUMO

Precise migration of neural stem/progenitor cells (NSCs) is crucially important for neurogenesis and repair in the nervous system. However, the detailed mechanisms are not clear. Our previous results showed that NSCs in varying differentiation states possess different migratory ability to vascular endothelial growth factor (VEGF). In this study, we demonstrate the different dynamics of focal adhesions (FAs) and reorganization of F-actin in NSCs during spreading and migration stimulated by VEGF. We found that the migrating NSCs of 0.5 and 1 day differentiation possess more FAs at leading edge than cells of other states. Moreover, the phosphorylation of focal adhesion kinase (FAK) and paxillin in NSCs correlates closely with their differentiation states. VEGF promotes FA formation with broad lamellipodium generation at the leading edge in chemotaxing cells of 0, 0.5, and 1 day differentiation, but not in cells of 3 days differentiation. Furthermore, cells of 1 day differentiation show a maximal asymmetry of FAs between lamella and cell rear, orchestrating cell polarization and directional migration. Time-lapse video analysis shows that the disassembly of FAs and the cell tail detachment in NSCs of 1 day differentiation are more rapid, along with the concurrent enlarged size of FAs at the leading edge, leading to the most effective chemotactic response to VEGF. Collectively, these results indicate that the dynamics of FAs and reorganization of F-actin in NSCs that undergo directional migration correlate closely with their differentiation states, contributing to the different chemotactic responses of these cells to VEGF.


Assuntos
Actinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Adesões Focais/metabolismo , Células-Tronco Neurais/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Linhagem Celular , Células-Tronco Neurais/citologia , Ratos
13.
Stem Cell Rev Rep ; 19(2): 358-367, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36242721

RESUMO

Satellite glial cells (SGCs) that surround sensory neurons in the peripheral nervous system ganglia originate from neural crest cells. Although several studies have focused on SGCs, the origin and characteristics of SGCs are unknown, and their lineage remains unidentified. Traditionally, it has been considered that SGCs regulate the environment around neurons under pathological conditions, and perform functions of supporting, nourishing, and protecting neurons. However, recent studies demonstrated that SGCs may have the characteristics of stem cells. After nerve injury, SGCs up-regulate the expression of stem cell markers and can differentiate into functional sensory neurons. Moreover, SGCs express several markers of Schwann cell precursors and Schwann cells, such as CDH19, MPZ, PLP1, SOX10, ERBB3, and FABP7. Schwann cell precursors have also been proposed as a potential source of neurons in the peripheral nervous system. The similarity in function and markers suggests that SGCs may represent a subgroup of Schwann cell precursors. Herein, we discuss the roles and functions of SGCs, and the lineage relationship between SGCs and Schwann cell precursors. We also describe a new perspective on the roles and functions of SGCs. In the DRG located on the posterior root of spinal nerves, satellite glial cells wrap around each sensory neuron to form an anatomically and functionally distinct unit with the sensory neurons. Following nerve injury, satellite glial cells up-regulate the expression of progenitor markers, and can differentiate into neurons.


Assuntos
Neuroglia , Células Satélites Perineuronais , Células Satélites Perineuronais/metabolismo , Neuroglia/metabolismo , Células de Schwann , Células Receptoras Sensoriais
14.
Front Nutr ; 10: 1032048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006929

RESUMO

Background: Although the association of zinc (Zn) with cardiovascular disease (CVD) has been studied, no consensus has been reached on this relationship, particularly dietary Zn intake. The purpose of this study was to assess the effect of dietary Zn intake on the risk of CVD and to analyze whether this effect varied according to zinc consumption using representative data from China. Methods: 11,470 adults from the China Health and Nutrition Survey (CHNS) were eventually enrolled. The dietary information was collected by the 3 day 24-h dietary recalls combined with dietary weighting method. CVD was defined as participants with self-reported physician-diagnosed apoplexy and/or myocardial infarction during the follow-up. Cox regression was used to calculate the hazard ratios (HRs) of CVD with 95% confidence intervals. Restricted cubic spline function plus Cox regression was used to visualize the influence trend of dietary Zn intake on new-onset CVD and to test whether this trend is linear. 2-segment Cox regression was established to address the nonlinear trend. Results: 431 participants developed CVD, including 262 strokes and 197 myocardial infarctions. Compared with the lowest quintile (Q1), the adjusted hazard ratios and 95% confidence interval (CI) of CVD in Q2 to Q5 of dietary Zn intake were 0.72 (0.54, 0.97), 0.59 (0.42, 0.81), 0.50 (0.34, 0.72) and 0.44 (0.27, 0.71), respectively. The influence trend of dietary Zn intake on new-onset CVD was nonlinear and L-shaped. When dietary Zn intake <13.66 mg/day, increased dietary Zn intake was significantly associated with decreased risk of developing CVD (HR = 0.87, 95% CI: 0.82-0.92, p-value <0.0001). Conclusion: An L-shaped trend was observed between dietary Zn intake and the risk of developing CVD, indicating that dietary Zn intake should be improved moderately, but not excessively, for the benefit of cardiovascular disease.

15.
Front Public Health ; 10: 1115908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699906

RESUMO

Background: As an essential trace element in the body, selenium is associated with the development of many diseases. The purpose of this study was to explore the association between dietary selenium intake and new-onset stroke risk in Chinese adults. Methods: Adults aged ≥18 years in the China Health and Nutrition Survey (CHNS) from 2004 to 2015 were enrolled. Participants were divided into five groups according to the quintile of dietary selenium intake: Q1 (≤ 29.80 µg/day), Q2 (29.80-38.53 µg/day), Q3 (38.53-47.23 µg/day), Q4 (47.23-60.38 µg/day), Q 5(>60.38 µg/day). Cox proportional-hazards model was used to explore the effect of dietary selenium on new-onset stroke. Restricted cubic spline (RCS) was used to visualize the dose-response relationship between dietary selenium and the risk of morbidity. Results: A total of 11,532 subjects were included, and 271 (2.35%) of them developed stroke during a mean follow-up of 6.78 person-years. Compared with the lowest selenium intake group, the HR and 95%CI of stroke in the participants with selenium intake of Q2, Q3, Q4 and Q5 were: 0.85 (0.59, 1.21), 0.62 (0.42, 0.92), 0.43 (0.28, 0.68), 0.49 (0.30, 0.82), respectively. There was an L-shaped relationship between dietary selenium and stroke (nonlinear P-value = 0.0420). The HR and 95%CI of developing stroke was 0.75 (0.65, 0.87) in participants with selenium intake ≤ 60 µg/day. Conclusions: The L-shaped negative association between dietary selenium and stroke in Chinese adults which indicated that dietary selenium should be improved to a certain level to prevent stroke.


Assuntos
Selênio , Acidente Vascular Cerebral , Adulto , Humanos , Adolescente , Estudos Retrospectivos , Acidente Vascular Cerebral/epidemiologia , Inquéritos Nutricionais , China/epidemiologia
16.
J Neurosci Res ; 89(8): 1173-84, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21538456

RESUMO

Although much effort has been devoted to the delineation of factors involved in the migration of neural stem/progenitor cells (NSCs), the relationship between the chemotactic response and the differentiation status of these cells remains elusive. In the present study, we found that NSCs in varying differentiation states possess different chemotactic responses to vascular endothelial growth factor (VEGF): first, the number of chemotaxing NSCs and the optimal concentrations of VEGF that induced the peak migration vary greatly; second, time-lapse video analysis shows that NSCs at certain differentiation states migrate more efficiently toward VEGF, although the migration speed remains unchanged irrespective of cell states; third, the phosphorylation status of Akt, ERK1/2, SAPK/JNK, and p38MAPK is closely related to the differentiation levels of NSCs subjected to VEGF; and, finally, although inhibition of ERK1/2 signaling significantly attenuates VEGF-stimulated transfilter migration of both undifferentiated and differentiating NSCs, NSCs show normal chemotactic response after treatment with inhibitors of SAPK/JNK or p38MAPK. Meanwhile, interference with PI3K/Akt signaling prevents only NSCs of 12 hr differentiation, but not NSCs of 1 day or 3 days differentiation, from migrating in response to VEGF. Moreover, blocking of PI3K/Akt or MAPK signaling impairs the migration efficiency and/or speed, the extent of which depends on the cell differentiation status. Collectively, these results demonstrate that differentiation of NSCs influences their chemotactic responses to VEGF: NSCs in varying differentiation states have different migratory capacities, thereby shedding light on optimization of the therapeutic potential of NSCs to be employed for neural regeneration after injury.


Assuntos
Diferenciação Celular/fisiologia , Quimiotaxia/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Quimiotaxia/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Neurais/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Stem Cell Rev Rep ; 17(3): 999-1013, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33389681

RESUMO

Dorsal root ganglia (DRG) sensory neurons can transmit information about noxious stimulus to cerebral cortex via spinal cord, and play an important role in the pain pathway. Alterations of the pain pathway lead to CIPA (congenital insensitivity to pain with anhidrosis) or chronic pain. Accumulating evidence demonstrates that nerve damage leads to the regeneration of neurons in DRG, which may contribute to pain modulation in feedback. Therefore, exploring the regeneration process of DRG neurons would provide a new understanding to the persistent pathological stimulation and contribute to reshape the somatosensory function. It has been reported that a subpopulation of satellite glial cells (SGCs) express Nestin and p75, and could differentiate into glial cells and neurons, suggesting that SGCs may have differentiation plasticity. Our results in the present study show that DRG-derived SGCs (DRG-SGCs) highly express neural crest cell markers Nestin, Sox2, Sox10, and p75, and differentiate into nociceptive sensory neurons in the presence of histone deacetylase inhibitor VPA, Wnt pathway activator CHIR99021, Notch pathway inhibitor RO4929097, and FGF pathway inhibitor SU5402. The nociceptive sensory neurons express multiple functionally-related genes (SCN9A, SCN10A, SP, Trpv1, and TrpA1) and are able to generate action potentials and voltage-gated Na+ currents. Moreover, we found that these cells exhibited rapid calcium transients in response to capsaicin through binding to the Trpv1 vanilloid receptor, confirming that the DRG-SGC-derived cells are nociceptive sensory neurons. Further, we show that Wnt signaling promotes the differentiation of DRG-SGCs into nociceptive sensory neurons by regulating the expression of specific transcription factor Runx1, while Notch and FGF signaling pathways are involved in the expression of SCN9A. These results demonstrate that DRG-SGCs have stem cell characteristics and can efficiently differentiate into functional nociceptive sensory neurons, shedding light on the clinical treatment of sensory neuron-related diseases.


Assuntos
Nociceptividade , Células Receptoras Sensoriais , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7 , Canal de Sódio Disparado por Voltagem NAV1.8 , Nestina , Neuroglia , Dor
18.
Artigo em Zh | MEDLINE | ID: mdl-21137324

RESUMO

Purified astrocytes were cultured in plates. When astrocytes grew over 80% of the plate, tachyzoites of Toxoplasma gondii RH strain were added for co-culture. In the period of 0-72 h, change of the astrocytes and tachyzoites was observed after Giemsa staining. In 0-48 h, monodansylcadaverine (MDC) was used to study the action of autophagy in the process of tachyzoites invading astrocytes. At 1 h co-culture, tachyzoites had entered in astrocytes and the autophagosomes appeared. At 4 h, the autophagosomes increased pronouncedly. However, after 12 h, number of autophagosomes considerably decreased and damage of the cells occurred. 48 h later, autophagosomes disappeared and more astrocytes were destroyed. At 72 h most cells destroyed and tachyzoites were released. The result showed that autophagy is inhibited when the astrocytes were in vitro infected by tachyzoites.


Assuntos
Astrócitos/citologia , Astrócitos/parasitologia , Toxoplasma/crescimento & desenvolvimento , Animais , Células Cultivadas , Técnicas de Cocultura , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley
19.
ACS Appl Mater Interfaces ; 12(47): 53021-53028, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170610

RESUMO

As a well-known electron-withdrawing group, benzo[c][1,2,5]thiadiazole (BT) has been intensively studied and adopted to construct polymer donors with tunable band gaps. However, polymer solar cells (PSCs) with BT-based polymer donors, limited by the weak absorption and inflexible energy level of fullerene derivatives, usually suffer mediocre power conversion efficiencies (PCEs). Here, through subtly tailoring a BT unit with asymmetric fluoro and alkyloxy groups and judiciously pairing a BT-based polymer donor with three narrow band gap non-fullerene acceptors (e.g., IEICO-4F, ITOIC-2F, and IDTCN-O), active layers with complementary absorption spectra, small lowest unoccupied molecular orbital (LUMO) offsets, and preferred morphologies have been achieved. Consequently, PSCs with excellent Jsc values (over 20 mA/cm2) and high PCEs up to 12.33% have been obtained. To the best of our knowledge, the value of 12.33% is among the highest PCEs for BT-based polymers in binary PSCs so far. This work demonstrates that the cooperative effect of energy levels, absorption spectra, and morphologies between the donors and acceptors is crucial for governing the performance of organic photovoltaics.

20.
Chem Asian J ; 15(14): 2198-2202, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32484590

RESUMO

Two novel molecules TAP and TAH with pronounced reversible halochromic properties have been synthesized and fully characterized. Their butterfly-like structures have been confirmed through single-crystal X-ray diffraction. Their UV-Vis absorption after protonation dramatically red-shifted with naked-eye-visible color change in a very dilute concentration of 10-5 M. Note that the original color of the solution can be recovered after the neutralization with a base.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA