Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 31(5): 1313-1331, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739479

RESUMO

Astrocyte-microglial interaction plays a crucial role in brain injury-associated neuroinflammation. Our previous data illustrated that astrocytes secrete microRNA, leading to anti-inflammatory effects on microglia. Long non-coding RNAs participate in neuroinflammation regulation after traumatic brain injury. However, the effect of astrocytes on microglial phenotype via long non-coding RNAs and the underlying molecular mechanisms remain elusive. We used long non-coding RNA sequencing on murine astrocytes and found that exosomal long non-coding RNA 4933431K23Rik attenuated traumatic brain injury-induced microglial activation in vitro and in vivo and ameliorated cognitive function deficiency. Furthermore, microRNA and messenger RNA sequencing together with binding prediction illustrated that exosomal long non-coding RNA 4933431K23Rik up-regulates E2F7 and TFAP2C expression by sponging miR-10a-5p. Additionally, E2F7 and TFAP2C, as transcription factors, regulated microglial Smad7 expression. Using Cx3cr1-Smad7 overexpression of adeno-associated virus, microglia specifically overexpressed Smad7 in the attenuation of neuroinflammation, resulting in less cognitive deficiency after traumatic brain injury. Mechanically, overexpressed Smad7 physically binds to IκBα and inhibits its ubiquitination, preventing NF-κB signaling activation. The Smad7 activator asiaticoside alleviates neuroinflammation and protects neuronal function in traumatic brain injury mice. This study revealed that an exosomal long non-coding RNA from astrocytes attenuates microglial activation after traumatic brain injury by up-regulating Smad7, providing a potential therapeutic target.


Assuntos
Lesões Encefálicas Traumáticas , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , Microglia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , MicroRNAs/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Fenótipo , Camundongos Endogâmicos C57BL
2.
Glia ; 71(11): 2679-2695, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37641212

RESUMO

Triggering receptor expressed on myeloid cell 2 (TREM2), a myeloid cell-specific signaling molecule, controls essential functions of microglia and impacts on the pathogenesis of Alzheimer's disease and other neurodegenerative disorders. TREM2 is also highly expressed in tumor-associated macrophages in different types of cancer. Here, we studied whether TREM2 influences glioma progression. We found a gender-dependent effect of glioma growth in wild-type (WT) animals injected with GL261-EGFP glioma cells. Most importantly, TREM2 promotes glioma progression in male but not female animals. The accumulation of glioma-associated microglia/macrophages (GAMs) and CD31+ blood vessel density is reduced in male TREM2-deficient mice. A transcriptomic analysis of glioma tissue revealed that TREM2 deficiency suppresses immune-related genes. In an organotypic slice model devoid of functional vascularization and immune components from periphery, the tumor size was not affected by TREM2-deficiency. In human resection samples from glioblastoma, TREM2 is upregulated in GAMs. Based on the Cancer Genome Atlas Program (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases, the TREM2 expression levels were negatively correlated with survival. Thus, the TREM2-dependent crosstalk between GAMs and the vasculature formation promotes glioma growth.


Assuntos
Glioblastoma , Glioma , Humanos , Masculino , Animais , Camundongos , Microglia , Macrófagos , Encéfalo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
3.
Ann Gen Psychiatry ; 22(1): 3, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721207

RESUMO

BACKGROUND: Sleep disorders are common during the outbreak of pandemic diseases, and similar disorders are noted in hospitalized COVID-19 patients. It is valuable to explore the clinical manifestations and risk factors for sleep disorders in COVID-19 patients. METHODS: Inpatients with COVID-19 were enrolled. Detailed clinical information was collected, and sleep quality was assessed by PSQI. Patients were divided into a sleep disorder group and a normal group based on a PSQI ≥ 7, and the clinical features were compared between the groups. RESULTS: Fifty-three patients were enrolled, and 47.2% presented sleep disorders. Sleep disorders were associated with older age (> 50), anemia and carbon dioxide retention. Furthermore, factors associated with abnormal component scores of the PSQI were: (1) patients with older age were more likely to have decreased sleep quality, prolonged sleep latency, decreased sleep efficiency, sleep disturbances, and daytime dysfunction; (2) decreased sleep quality and prolonged sleep latency were associated with dyspnea, whereas carbon dioxide retention and more lobes involved in chest CT were associated with prolonged sleep latency; (3) decreased sleep efficiency was more prevalent in patients with anemia. CONCLUSIONS: Sleep disorders were prevalent in patients during the acute phase of COVID-19, and many risk factors (older age, anemia, carbon dioxide retention, the number of lobes involved in chest CT, and dyspnea) were identified. It is important to assess the presence of sleep disorders in patients to provide early intervention.

4.
Prep Biochem Biotechnol ; 53(1): 81-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35289738

RESUMO

Docosahexaenoic acid (DHA) has numerous functions in adjusting the organic health and pragmatic value in medicine and food field. In this study, we compared glycerol and glucose as the only carbon source for DHA production by Aurantiochytrium. When the glycerol concentration was 120 g/L, the maximum DHA yield was 11.08 g/L, and the DHA yield increased significantly, reaching 47.67% of the total lipid content. When the cells grew in glucose, the DHA proportion was 37.39%. Transcriptome data showed that the glycolysis pathway and tricarboxylic acid cycle in Aurantiochytrium were significantly inhibited during glycerol culture, which promoted the tricarboxylic acid transport system and was conducive to the synthesis of fatty acids by acetyl coenzyme A; glucose as substrate activated fatty acid synthesis (FAS)pathway and produced more saturated fatty acids, while glycerol as substrate activated polyketide synthase (PKS)pathway and produced more long-chain polyunsaturated fatty acids. This laid a foundation for fermentation metabolism regulation and molecular transformation.


Assuntos
Glicerol , Estramenópilas , Glicerol/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Glucose/metabolismo , Fermentação , Ácidos Graxos/química , Perfilação da Expressão Gênica , Estramenópilas/genética , Estramenópilas/metabolismo
5.
Eur J Neurosci ; 53(4): 1350-1361, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33052619

RESUMO

To explore the clinical characteristics and prognosis of COVID-19 patients with cerebral stroke. A total of 2,474 COVID-19 patients from February 10th to March 24th, 2020 were admitted and treated in two branches (Optic Valley and Sino-French New City branch) of the Tongji Hospital. Data on the clinical characteristics, laboratory parameters and prognosis of COVID-19 patients with or without cerebral stroke were collected and comparatively analysed. Of the 2,474 COVID-19 patients, 113 (4.7%) patients had cerebral stroke and 25 (1.0%) patients had new-onset stroke. Eighty-eight (77.9%) patients in the previous-stroke group had cerebral ischaemia, while 25 (22.1%) patients in the new-onset stroke group had cerebral ischaemia. Most COVID-19 patients with stroke were elderly with more comorbidities such as hypertension, diabetes and heart diseases than patients without stroke. Laboratory examinations showed hypercoagulation and elevated serum parameters such as IL-6, cTnI, NT pro-BNP and BUN. Consciousness disorders, a long disease course and poor prognosis were also more commonly observed in stroke patients. The mortality rate of stroke patients was almost double (12.4% vs. 6.9%) that of patients without stroke. In addition, age, male sex and hypertension were independent predictors for new cerebral stroke in COVID-19 patients. In conclusion, the high risk of new-onset stroke must be taken into consideration when treating COVID-19 patients with an elderly age combined with a history of hypertension. These patients are more vulnerable to multiorgan dysfunction and an overactivated inflammatory response, in turn leading to an unfavourable outcome and higher mortality rate.


Assuntos
COVID-19/complicações , Acidente Vascular Cerebral/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , Comorbidade , Feminino , Humanos , Hipertensão/epidemiologia , Incidência , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Acidente Vascular Cerebral/complicações
6.
J Hepatol ; 74(6): 1295-1302, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33347952

RESUMO

BACKGROUND & AIMS: The evolution and clinical significance of abnormal liver chemistries and the impact of hepatitis B infection on outcome in patients with COVID-19 is not well characterized. This study aimed to explore these issues. METHODS: This large retrospective cohort study included 2,073 patients with coronavirus disease 2019 (COVID-19) and definite outcomes in Wuhan, China. Longitudinal liver function tests were conducted, with associated factors and risk of death determined by multivariate regression analyses. A prognostic nomogram was formulated to predict the survival of patients with COVID-19. The characteristics of liver abnormalities and outcomes of patients with COVID-19, with and without hepatitis B, were compared after 1:3 propensity score matching. RESULTS: Of the 2,073 patients, 1,282 (61.8%) had abnormal liver chemistries during hospitalization, and 297 (14.3%) had a liver injury. The mean levels of aspartate aminotransferase (AST) and direct bilirubin (D-Bil) increased early after symptom onset in deceased patients and showed disparity compared to levels in discharged patients throughout the clinical course of the disease. Abnormal AST (adjusted hazard ratio [HR] 1.39; 95% CI 1.04-1.86, p = 0.027) and D-Bil (adjusted HR 1.66; 95% CI 1.22-2.26; p = 0.001) levels at admission were independent risk factors for mortality due to COVID-19. A nomogram was established based on the results of multivariate analysis and showed sufficient discriminatory power and good consistency between the prediction and the observation. HBV infection in patients did not increase the risk of poor COVID-19-associated outcomes. CONCLUSIONS: Abnormal AST and D-Bil levels at admission were independent predictors of COVID-19-related mortality. Therefore, monitoring liver chemistries, especially AST and D-Bil levels, is necessary in hospitalized patients with COVID-19. LAY SUMMARY: Liver test abnormalities (in particular elevations in the levels of aspartate aminotransferase [AST] and direct bilirubin [D-Bil]) were observed after symptom onset in patients who went on to die of coronavirus disease 2019 (COVID-19). Abnormal levels of AST and D-Bil at admission were independent predictors of COVID-19-related mortality. HBV infection in patients did not increase the risk of poor COVID-19-associated outcomes.


Assuntos
Aspartato Aminotransferases/sangue , Bilirrubina/sangue , COVID-19/mortalidade , Mortalidade Hospitalar , Hepatopatias/complicações , SARS-CoV-2 , Idoso , Feminino , Hepatite B/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Pontuação de Propensão , Estudos Retrospectivos
7.
J Neuroinflammation ; 17(1): 89, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32192523

RESUMO

BACKGROUND: The interaction between astrocytes and microglia plays a vital role in the damage and repair of brain lesions due to traumatic brain injury (TBI). Recent studies have shown that exosomes act as potent mediators involved in intercellular communication. METHODS: In the current study, the expression of inflammatory factors and miR-873a-5p in the lesion area and oedema area was evaluated in 15 patients with traumatic brain injury. Exosomes secreted by astrocytes were detected by immunofluorescence, Western blot and electron microscopy. A mouse model of TBI and an in vitro model of LPS-induced primary microglia were established to study the protective mechanism of exosomes from miR-873a-5p overexpressing in TBI-induced nerve injury. RESULTS: We discovered that exosomes derived from activated astrocytes promote microglial M2 phenotype transformation following TBI. More than 100 miRNAs were detected in these astrocyte-derived exosomes. miR-873a-5p is a major component that was highly expressed in human traumatic brain tissue. Moreover, miR-873a-5p significantly inhibited LPS-induced microglial M1 phenotype transformation and the subsequent inflammation through decreased phosphorylation of ERK and NF-κB p65. This effect also greatly improved the modified neurological severity score (mNSS) and attenuated brain injury in a strictly controlled cortical impact mouse model. CONCLUSIONS: Taken together, our research indicates that miRNAs in the exosomes derived from activated astrocytes play a key role in the astrocyte-microglia interaction. miR-873a-5p, as one of the main components of these astrocyte-derived exosomes, attenuated microglia-mediated neuroinflammation and improved neurological deficits following TBI by inhibiting the NF-κB signalling pathway. These findings suggest a potential role for miR-873a-5p in treating traumatic brain injury.


Assuntos
Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Comunicação Celular/fisiologia , Exossomos/química , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
8.
Biochem Biophys Res Commun ; 509(2): 624-631, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30606476

RESUMO

High mobility group box-1 protein (HMGB-1) is one of the most important DAMPs and has been previously shown to promote the formation of the NOD-like receptor with pyrin domain containing-3 (NLRP3) inflammasome in microglia. Interleukin 4 (IL4) is a Th2-derived cytokine that plays a significant role in the function of various immune cells. However, the underlying molecular mechanism by which IL4 signaling antagonizes NLRP3 inflammasome is poorly characterized. In particular, whether IL4 could modulate NLRP3 inflammasome in astrocytes remains unknown. In the present study, we elucidated this phenomenon and the mechanism by which IL4 inhibits HMGB1-mediated NLRP3 inflammasome formation in astrocytes. For this purpose, we cultured and extracted primary astrocytes, setup different concentrations of HMGB1, and used immunofluorescence and western blotting to detect NLRP3 inflammasome formation, including NLRP3, ASC and caspase-1, and signaling changes in the nuclear factor κB (NF-κB). Meanwhile, BAY 11-7082 and IL4 were added with HMGB1 to observe the NLRP3 inflammasome and changes in NF-κB expression. Our data showed that HMGB1 could effectively promote NLRP3 inflammasome formation by activating NF-κB in astrocytes. This effect can be inhibited by BAY 11-7082, a NF-κB inhibitor. Meanwhile, IL4 could activate PPARγ via the STAT6 singling pathway and inhibit NF-κB activation, significantly decreasing formation of the NLRP3 inflammasome complex. Our study demonstrated that the NLRP3 inflammasome complex is also expressed in astrocytes, and IL4 could inhibit HMGB1-mediated NLRP3 inflammasome formation, through negative regulation of NF-κB activity and promotion of PPARγ activation.


Assuntos
Astrócitos/imunologia , Proteína HMGB1/imunologia , Interleucina-4/imunologia , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , PPAR gama/imunologia , Animais , Células Cultivadas , Camundongos Endogâmicos C57BL
9.
BMC Infect Dis ; 19(1): 1088, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888505

RESUMO

BACKGROUND: Egg-induced immune response and granuloma formation are thought to be the basis of central nervous system (CNS)-related clinical symptoms of Schistosoma japonicum. Microglia/macrophages are the major immune cells involved in detection and subsequent elimination of pathogens and injured tissue in the brain. However, little is known about their role in the pathogenesis of neuroschistosomiasis. The main purpose of the study is to clarify the pathological involvement of microglia/macrophages in the pathogenesis of neuroschistosomiasis (NS). METHODS: Staining techniques were applied to the granuloma tissues excised from 4 patients, as well as mice model which was established by microinjecting viable S. japonicum eggs into the brain. Clinical features of the patients and neurological symptoms in mice were also collected and analyzed in terms of their correlation with microglia/macrophages. RESULTS: Microglia/macrophages constituted the major portions of the granulomas surrounding the eggs in both all human cases and S. japonicum egg-injected mice. Granuloma persisted in all patients accompanied by unremitted neurological symptoms, while in mice granuloma formation initiated on day 3, peaked on day 7 and subsided on day 30 post injection with S. japonicum eggs. No neurological abnormalities were observed in egg-injected mice except for significant weight decrease on day 3 compared with saline-injected control. M1 polarization of microglia/macrophages was confirmed in egg-injected mice 3 days post injection and in all human cases. M2 polarization was absent in human patients despite the duration of complaints but dominated in the whole progression of egg-induced pathology in mice until the elimination of eggs and subsidence of neuroinflammation on day 30 post injection. CONCLUSIONS: Microglia/macrophages participated actively in the granuloma microenvironment of encephalic schistosomiasis japonicum in both human and mice. The polarization pattern of microglia/macrophages coincided with the symptomatic features in human cases and S. japonicum egg-injected mice, indicating M2 instead of M1 activation as a probably more important mediator in the battle against egg-induced pathology and concomitant manifestations. These new findings will shed light on the pathogenesis of NS from a brand-new perspective, and may contribute to the immunotherapy development for such disease, favoring perhaps M2 polarization of microglia/macrophages as a feasible strategy.


Assuntos
Encéfalo/patologia , Encéfalo/parasitologia , Granuloma/imunologia , Macrófagos/imunologia , Microglia/imunologia , Schistosoma japonicum/fisiologia , Esquistossomose Japônica/parasitologia , Adulto , Animais , Polaridade Celular/imunologia , Modelos Animais de Doenças , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óvulo/imunologia , Coelhos , Schistosoma japonicum/isolamento & purificação
10.
J Huazhong Univ Sci Technolog Med Sci ; 35(1): 105-110, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25673202

RESUMO

Central neurocytomas (CNs), initially asymptomatic, sometimes become huge before detection. We described and analyzed the clinical, radiological, operational and outcome data of 13 cases of huge intraventricular CNs, and discussed the treatment strategies in this study. All huge CNs (n=13) in our study were located in bilateral lateral ventricle with diameter ≥5.0 cm and had a broad-based attachment to at least one side of the ventricle wall. All patients received craniotomy to remove the tumor through transcallosal or transcortical approach and CNs were of typical histologic and immunohistochemical features. Adjuvant therapies including conventional radiation therapy (RT) or gamma knife radiosurgery (GKRS) were also performed postoperatively. Transcallosal and transcortical approaches were used in 8 and 5 patients, respectively. Two patients died within one month after operation and 3 patients with gross total resection (GTR) were additionally given a decompressive craniectomy (DC) and/or ventriculoperitoneal shunt (VPS) as the salvage therapy. Six patients received GTR(+RT) and 7 patients received subtotal resection (STR)(+GKRS). Eight patients suffered serious complications such as hydrocephalus, paralysis and seizure after operation, and patients who underwent GTR showed worse functional outcome [less Karnofsky performance scale (KPS) scores] than those having STR(+GKRS) during the follow-up period. The clinical outcome of huge CNs seemed not to be favorable as that described in previous reports. Surgical resection for huge CNs should be meticulously considered to guarantee the maximum safety. Better results were achieved in STR(+GKRS) compared with GTR(+RT) for huge CNs, suggesting that STR(+GKRS) may be a better treatment choice. The recurrent or residual tumor can be treated with GKRS effectively.


Assuntos
Neurocitoma/terapia , Antineoplásicos/uso terapêutico , Terapia Combinada , Humanos , Radioterapia , Procedimentos Cirúrgicos Operatórios
11.
Transl Stroke Res ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977638

RESUMO

Chronic cerebral ischemia (CCI) results in a prolonged insufficient blood supply to the brain tissue, leading to impaired neuronal function and subsequent impairment of cognitive and motor abilities. Our previous research showed that in mice with bilateral carotid artery stenosis, the collateral neovascularization post Encephalo-myo-synangiosis (EMS) treatment could be facilitated by bone marrow mesenchymal stem cells (MSCs) transplantation. Considering the advantages of biomaterials, we synthesized and modified a gelatin hydrogel for MSCs encapsulation. We then applied this hydrogel on the brain surface during EMS operation in rats with CCI, and evaluated its impact on cognitive performance and collateral circulation. Consequently, MSCs encapsulated in hydrogel significantly augment the therapeutic effects of EMS, potentially by promoting neovascularization, facilitating neuronal differentiation, and suppressing neuroinflammation. Furthermore, taking advantage of multi-RNA-sequencing and in silico analysis, we revealed that MSCs loaded in hydrogel regulate PDCD4 and CASP2 through the overexpression of miR-183-5p and miR-96-5p, thereby downregulating the expression of apoptosis-related proteins and inhibiting early apoptosis. In conclusion, a gelatin hydrogel to enhance the functionality of MSCs has been developed, and its combination with EMS treatment can improve the therapeutic effect in rats with CCI, suggesting its potential clinical benefit.

12.
Neuro Oncol ; 26(1): 137-152, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37555799

RESUMO

BACKGROUND: Approximately 35% of pituitary adenoma (PA) display an aggressive profile, resulting in low surgical total resection rates, high recurrence rates, and worse prognosis. However, the molecular mechanism of PA invasion remains poorly understood. Although "a disintegrin and metalloproteinases" (ADAMs) are associated with the progression of many tumors, there are no reports on ADAM22 in PA. METHODS: PA transcriptomics databases and clinical specimens were used to analyze the expression of ADAM22. PA cell lines overexpressing wild-type ADAM22, the point mutation ADAM22, the mutated ADAM22 without disintegrin domain, and knocking down ADAM22 were generated. Cell proliferation/invasion assays, flow cytometry, immunohistochemistry, immunofluorescence, co-immunoprecipitation, mass spectrometry, Reverse transcription-quantitative real-time PCR, phos-tag SDS-PAGE, and Western blot were performed for function and mechanism research. Nude mice xenograft models and rat prolactinoma orthotopic models were used to validate in vitro findings. RESULTS: ADAM22 was significantly overexpressed in PA and could promote the proliferation, migration, and invasion of PA cells. ADAM22 interacted with integrin ß1 (ITGB1) and activated FAK/PI3K and FAK/ERK signaling pathways through its disintegrin domain to promote PA progression. ADAM22 was phosphorylated by PKA and recruited 14-3-3, thereby delaying its degradation. ITGB1-targeted inhibitor (anti-itgb1) exerted antitumor effects and synergistic effects in combination with somatostatin analogs or dopamine agonists in treating PA. CONCLUSIONS: ADAM22 was upregulated in PA and was able to promote PA proliferation, migration, and invasion by activating ITGB1 signaling. PKA may regulate the degradation of ADAM22 through post-transcriptional modification levels. ITGB1 may be a potential therapeutic target for PA.


Assuntos
Desintegrinas , Neoplasias Hipofisárias , Camundongos , Humanos , Animais , Ratos , Integrina beta1/metabolismo , Camundongos Nus , Metaloproteases , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células
13.
Int J Biol Sci ; 20(2): 801-817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169563

RESUMO

Somatostatin analogues (SSTA) are first-line pharmacological treatment choice for acromegaly, which received satisfying tumor shrinkage and normalization of growth hormone. However, there are still patients unresponsive to SSTA, and the underline mechanism remains unknown. Besides, there is no evidence regarding the role of endoplasmic reticulum stress (ERS) and its transmission in SSTA resistance, which also require investigation. Primary growth hormone adenoma cells and cell lines were treated with SSTA; autophagy double-labeled LC3 (mRFP-GFP) adenovirus transfection, flow cytometry sorting, western blotting, calcium imaging as well as immunofluorescence staining were used to determine ERS and autophagy signal transmission; xenograft and syngeneic tumor in vivo model were exploited to confirm the ERS signal transmission mediated effect. Our results revealed that SSTA induces ERS in pituitary growth hormone (GH) adenoma cells. The ERS signals can be intercellularly transmitted, leading to less responsible to SSTA treatment. Moreover, SSTA stimulates inositol triphosphate (IP3) elevation, mediating ERS intercellular transfer. In addition, connexin 36 tunnels ERS transmission, and its blocker, Quinine, exhibits a synergistic effect with SSTA treating GH adenoma. Our study provided insight into ERS intercellular transmission mediated SSTA resistance, which could be translated into clinical usage to improve SSTA efficiency in GH adenoma treatment.


Assuntos
Adenoma , Neoplasias Hipofisárias , Humanos , Somatostatina/farmacologia , Somatostatina/uso terapêutico , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Proteína delta-2 de Junções Comunicantes , Adenoma/tratamento farmacológico , Estresse do Retículo Endoplasmático
14.
Front Neurol ; 15: 1268433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440116

RESUMO

Background and objective: Stent-assisted coil (SAC) embolization is a commonly used endovascular treatment for unruptured intracranial aneurysms (UIAs) but can be associated with symptomatic delayed intracerebral hemorrhage (DICH). Our study aimed to investigate the hemodynamic risk factors contributing to DICH following SAC embolization and to establish a classification for DICH predicated on hemodynamic profiles. Methods: This retrospective study included patients with UIAs located in the internal carotid artery (ICA) treated with SAC embolization at our institution from January 2021 to January 2022. We focused on eight patients who developed postoperative DICH and matched them with sixteen control patients without DICH. Using computational fluid dynamics, we evaluated the hemodynamic changes in distal arteries [terminal ICA, the anterior cerebral artery (ACA), and middle cerebral artery (MCA)] pre-and post-embolization. We distinguished DICH-related arteries from unrelated ones (ACA or MCA) and compared their hemodynamic alterations. An imbalance index, quantifying the differential in flow velocity changes between ACA and MCA post-embolization, was employed to gauge the flow distribution in distal arteries was used to assess distal arterial flow distribution. Results: We identified two types of DICH based on postoperative flow alterations. In type 1, there was a significant lower in the mean velocity increase rate of the DICH-related artery compared to the unrelated artery (-47.25 ± 3.88% vs. 42.85 ± 3.03%; p < 0.001), whereas, in type 2, there was a notable higher (110.58 ± 9.42% vs. 17.60 ± 4.69%; p < 0.001). Both DICH types demonstrated a higher imbalance index than the control group, suggesting an association between altered distal arterial blood flow distribution and DICH occurrence. Conclusion: DICH in SAC-treated UIAs can manifest as either a lower (type 1) or higher (type 2) in the rate of velocity in DICH-related arteries. An imbalance in distal arterial blood flow distribution appears to be a significant factor in DICH development.

15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 44(3): 441-3, 2013 May.
Artigo em Zh | MEDLINE | ID: mdl-23898531

RESUMO

OBJECTIVE: To determine appropriate protocols for the identification and management of intra operative suspicious tissues during transsphenoidal surgery. METHODS: Clinical data and pathological reports of 20 patients with intra-operative suspicious tissues during transsphenoidal surgeries were analyzed retrospectively. The methods for discriminating between adenoma and normal pituitary tissues were reviewed. RESULTS: The postoperative pathological reports revealed that adenoma and normal pituitary tissues coexisted in 9 samples, while 5 samples were identified as normal pituitary tissues, 2 as adenoma tissues, and 4 as other tissues. Adenomas were distinguished from normal pituitary tissues on the basis of intra-operative appearance, texture, blood supply and possible existence of boundary. CONCLUSION: If decisions are difficult to made during surgeries from the appearance of the suspicious tissues, pathological examinations are advised as a guidance for the next steps.


Assuntos
Adenoma/cirurgia , Procedimentos Neurocirúrgicos , Neoplasias Hipofisárias/cirurgia , Adenoma/patologia , Adulto , Procedimentos Cirúrgicos Endócrinos , Feminino , Humanos , Período Intraoperatório , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/patologia , Estudos Retrospectivos , Seio Esfenoidal/cirurgia , Adulto Jovem
16.
Stem Cell Res Ther ; 14(1): 233, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667370

RESUMO

BACKGROUND: To explore whether local transplantation of mesenchymal stem cells (MSCs) in temporal muscle can promote collateral angiogenesis and to analyze its main mechanisms of promoting angiogenesis. METHODS: Bilateral carotid artery stenosis (BCAS) treated mice were administrated with encephalo-myo-synangiosis (EMS), and bone marrow mesenchymal stem cells (BMSCs) were transplanted into the temporal muscle near the cerebral cortex. On the 30th day after EMS, the Morris water maze, immunofluorescence, laser speckle imaging, and light sheet microscopy were performed to evaluate angiogenesis; In addition, rats with bilateral common carotid artery occlusion were also followed by EMS surgery, and BMSCs from GFP reporter rats were transplanted into the temporal muscle to observe the survival time of BMSCs. Then, the concentrated BMSC-derived conditioned medium (BMSC-CM) was used to stimulate HUVECs and BMECs for ki-67 immunocytochemistry, CCK-8, transwell and chick chorioallantoic membrane assays. Finally, the cortical tissue near the temporal muscle was extracted after EMS, and proteome profiler (angiogenesis array) as well as RT-qPCR of mRNA or miRNA was performed. RESULTS: The results of the Morris water maze 30 days after BMSC transplantation in BCAS mice during the EMS operation, showed that the cognitive impairment in the BCAS + EMS + BMSC group was alleviated (P < 0.05). The results of immunofluorescence, laser speckle imaging, and light sheet microscopy showed that the number of blood vessels, blood flow and astrocytes increased in the BCAS + EMS + BMSC group (P < 0.05). The BMSCs of GFP reporter rats were applied to EMS and showed that the transplanted BMSCs could survive for up to 14 days. Then, the results of ki-67 immunocytochemistry, CCK-8 and transwell assays showed that the concentrated BMSC-CM could promote the proliferation and migration of HUVECs and BMECs (P < 0.05). Finally, the results of proteome profiler (angiogenesis array) in the cerebral cortex showed that the several pro-angiogenesis factors (such as MMP-3, MMP-9, IGFBP-2 or IGFBP-3) were notably highly expressed in MSC transplantation group compared to others. CONCLUSIONS: Local MSCs transplantation together with EMS surgery can promote angiogenesis and cognitive behavior in chronic brain ischemia mice. Our study illustrated that MSC local transplantation can be the potential therapeutical option for improving EMS treatment efficiency which might be translated into clinical application.


Assuntos
Isquemia Encefálica , Células-Tronco Mesenquimais , Camundongos , Ratos , Animais , Antígeno Ki-67 , Proteoma , Sincalida , Neovascularização Patológica , Isquemia Encefálica/terapia
17.
Front Neurol ; 14: 1095266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181546

RESUMO

Background: The shaping of an accurate and stable microcatheter plays a vital role in the successful embolization of intracranial aneurysms. Our study aimed to investigate the application and the role of AneuShape™ software in microcatheter shaping for intracranial aneurysm embolization. Methods: From January 2021 to June 2022, 105 patients with single unruptured intracranial aneurysms were retrospectively analyzed with or without AneuShape™ software to assist in microcatheter shaping. The rates of microcatheter accessibility, accurate positioning, and stability for shaping were analyzed. During the operation, fluoroscopy duration, radiation dose, immediate postoperative angiography, and procedure-related complications were evaluated. Results: Compared to the manual group, aneurysm-coiling procedures involving the AneuShape™ software exhibited superior results. The use of the software resulted in a lower rate of reshaping microcatheters (21.82 vs. 44.00%, p = 0.015) and higher rates of accessibility (81.82 vs. 58.00%, p = 0.008), better positioning (85.45 vs. 64.00%, p = 0.011), and higher stability (83.64 vs. 62.00%, p = 0.012). The software group also required more coils for both small (<7 mm) and large (≥7 mm) aneurysms compared to the manual group (3.50 ± 0.19 vs. 2.78 ± 0.11, p = 0.008 and 8.22 ± 0.36 vs. 6.00 ± 1.00, p = 0.081, respectively). In addition, the software group achieved better complete or approximately complete aneurysm obliteration (87.27 vs. 66.00%, p = 0.010) and had a lower procedure-related complication rate (3.60 vs. 12.00%, p = 0.107). Without this software, the operation had a longer intervention duration (34.31 ± 6.51 vs. 23.87 ± 6.98 min, p < 0.001) and a higher radiation dose (750.50 ± 177.81 vs. 563.53 ± 195.46 mGy, p < 0.001). Conclusions: Software-based microcatheter shaping techniques can assist in the precise shaping of microcatheters, reduce operating time and radiation dose, improve embolization density, and facilitate more stable and efficient intracranial aneurysm embolization.

18.
Front Neurol ; 14: 1273822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941571

RESUMO

Background: Cerebral extracranial-intracranial (EC-IC) revascularization technique (superficial temporal artery-middle cerebral artery (STA-MCA) bypass grafting) has become the preferred surgical method for the treatment of Moyamoya disease (MMD). We attempted to completely free the two branches of the superficial temporal artery without disconnection. Extracranial and intracranial blood flow reconstruction were then modified by selectively performing a direct bypass technique on one branch and a patch fusion technique on the other of the STA based on the blood flow and the vascular diameter of the intracranial surface blood vessels. Methods: A series of modified STA-MCA bypass surgeries performed consecutively between March 2022 and March 2023 were reviewed and compared to conventional combined bypass surgeries performed during the same period. The following information was collected from all enrolled patients: demographic characteristics, clinical symptoms, and preoperative and postoperative imaging, including Suzuki stage and Matsushima grade. The modified Rankin scale (mRS) was used to assess the changes in neurological status before and after surgery. Results: A total of 41 patients with Moyamoya disease (MMD) who underwent cerebral revascularization were included in this study, of which 30 were conventional revascularization and 11 were modified revascularization. The mean age was 49.91 years, and 18 (43.9%) of the patients were women. The modified group had a lower incidence of cerebral hyperperfusion syndrome (18.2%) than the conventional group (23.3%). After at least 3 months of follow-up, the bypass patency rate remained 100% in the modified group and 93.3% in the conventional group. All patients in the modified group achieved a better Matsushima grade (A + B), with six (54.5%) having an A and five (45.5%) having a B. In contrast, four patients (13.3%) in the conventional group had a Matsushima grade of C. In all, 72.8% of the modified group had postoperative mRS scores of 0 and 1, which was higher than that of the traditional group (63.3%). Conclusion: The improved STA-MCA bypass could provide blood flow to multiple cerebral ischemic areas, reduce excessive blood perfusion, and ensure blood supply to the scalp, with lower complications and better clinical benefits than the traditional combined bypass.

19.
Cancers (Basel) ; 15(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444485

RESUMO

TAF participated in the progression of various cancers, including PA via the release of soluble factors. Exosomes belonged to extracellular vesicles, which were revealed as a crucial participator in intercellular communication. However, the expression pattern and effect of TAF-derived exosomes remained largely unknown in PA. In the present study, we performed in silico analysis based on public RNA-seq datasets to generate the circRNA/miRNA regulatory network. The qRT-PCR, Western blotting, RNA pull-down, and luciferase assay were performed to investigate the effect of TAF-derived exosomes. TAF-derived exosomal circDennd1b was significantly upregulated in PA and promoted the proliferation, migration, and invasion of PA cells via sponging miR-145-5p in PA cells. In addition, miR-145-5p directly regulated One Cut homeobox 2 (ONECUT2/OC2) expression and inhibited the promoting effect of ONECUT2 on PA. We further demonstrated that ONECUT2 transcriptionally increased fibroblast growth factor receptor 3 (FGFR3) expression, which further activates the mitogen-activated protein kinases (MAPK) pathway, thus promoting PA progression. Moreover, the suppression of TAFs by ABT-263 and ONECUT2 by CSRM617 inhibited the growth of PA. In conclusion, our study illustrated that TAF-derived exosomal circDennd1b affected PA progression via regulating ONECUT2 expression, which provides a potential therapeutic strategy against aggressive PA.

20.
Transl Stroke Res ; 14(4): 608-623, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36181627

RESUMO

Moyamoya disease (MMD) is characterized by frequent migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) in the intima layer of blood vessels. However, the underlying mechanism is unclear. Toll-like receptor (TLR) 7 is abundantly expressed in smooth muscle cells (SMCs) in multiple vascular diseases, which might be linked to the disease-associated vascular remodeling. In the present study, the expression of TLR7 in MMD vessels was examined using the superficial temporal artery (STA) and middle cerebral artery (MCA) from MMD patients. Furthermore, the effect of TLR7 activation on the VSMC phenotype switch in vitro and vascular remodeling in vivo was assessed using a 9.4Tesla MRI. Our results demonstrated that the TLR7 and microRNA Let-7c expression are upregulated in VSMCs and the plasma of MMD patients, respectively. Additionally, TLR7 stimulation by Let-7c or Imiquimod induces a synthetic phenotype switch in VSMCs. Mechanistic studies revealed that Akt/mTOR signaling is responsible for this TLR-induced VSMC phenotypic switch. The Let-7c or Imiquimod treatment also resulted in reduced blood flow of internal carotid arteries (ICAs) in an in vivo model, while TLR7 inhibition attenuated the ICA stenosis. Besides, Let-7c was also found to be elevated in the hypoxic endothelial cells. Taken together, our study demonstrates that Let-7c released by endothelial cells under hypoxic conditions may activate TLR7 on VSMCs, ultimately leading to the phenotype switch and vascular wall remodeling. These findings thus elucidate the putative mechanisms underlying progressive stenosis of blood vessels in MMD and provide prospective therapeutic targets for further exploration.


Assuntos
Doença de Moyamoya , Humanos , Doença de Moyamoya/genética , Remodelação Vascular/fisiologia , Constrição Patológica/metabolismo , Células Endoteliais/metabolismo , Imiquimode/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA