Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Cell Int ; 22(1): 248, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945579

RESUMO

A considerable number of glioblastoma (GBM) patients developed drug resistance to Temozolomide (TMZ) during chemotherapy, resulting in therapeutic failure and tumor recurrence. However, the exact mechanism of TMZ chemoresistance in GBM is still poorly clarified. As a novel identified lncRNA, LINC00520 was located on chromosome 14 and overexpressed in multiple human cancers. This study was designed and conducted to investigate the role and underlying mechanism of LINC00520 in GBM chemoresistance to TMZ. The qRT-PCR assay demonstrated that LINC00520 was significantly overexpressed in TMZ-sensitive and/or TMZ-resistant GBM cells (P < 0.001). The silencing of LINC00520 markedly reduced the cell viability, suppressed colony formation, induced cell apoptosis and G1/S phase arrest in TMZ-resistant cells (P < 0.001). In contrast, overexpression of LINC00520 conferred TMZ-resistant phenotype of GBM cells in vitro (P < 0.001). The orthotopic xenograft model was established and the results indicated that the volume of tumor xenografts in vivo was markedly inhibited by TMZ treatment after the silencing of LINC00520 (P < 0.001). Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay revealed a strong affinity of transcription factor STAT3 to the promoter regions of LINC00520, suggesting that STAT3 mediated the aberrant expression of LINC00520 in GBM. Further experiments demonstrated that LINC00520 could interact with RNA-binding protein LIN28B to inhibit autophagy and reduce DNA damage, thereby contributing to TMZ chemoresistance in GBM. These findings suggested that STAT3/LINC00520/LIN28B axis might be a promising target to improve TMZ chemoresistance of GBM.

2.
Yi Chuan ; 40(3): 237-249, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29576547

RESUMO

H3K4me3 is an important epigenetic modification that plays a critical role in maintaining self-renewal of mouse embryonic stem cells (mESCs). H3K4me3 is catalyzed mainly by the mixed lineage leukemia (MLL) methyl-transferase complex. ASH2L, a core subunit of the MLL complex, participates in regulating the open state of chromatin in mESCs. There are two isoforms of the ASH2L protein: ASH2L-1 (80 kDa), which only exists in mouse embryonic fibroblasts and ASH2L-2 (65 kDa), which is the predominant isoform in mESCs. The roles of Ash2l-1 and Ash2l-2 in mESCs have not yet been elucidated. In this study, we established Ash2l-1 -/- and Ash2l-2 -/- knockout mESCs using CRISPR/Cas9. Alkaline phosphatase (AP) staining, immunofluorescence staining, and qRT-PCR showed that there were no obvious differences on the expression level of AP and pluripotent transcription factors (Nanog, Oct4, sox2 and Klf4) among Ash2l-1 -/- mESCs, Ash2l-2 -/- mESCs and wild type (WT) mESCs. However, analysis of embryoid body (EB) differentiation showed that the expression level of Snai2 (ectoderm gene) and Gata4 (endoderm gene) in Ash2l-1 -/- EBs was significantly lower than that in WT EBs (P<0.01). Western blotting assay revealed that the expression of ASH2L-2 was significantly increased (P<0.01) in Ash2l-1 -/- mESCs and vice versa. However, there were no obvious differences on the genomic H3K4me3 level among Ash2l-1 -/- mESCs, Ash2l-2 -/- mESCs and WT mESCs. These results indicate that there exist compensation effects between Ash2l-1 and Ash2l-2. Bioinformatic analysis predicted that there were three and 16 potential binding sites for pluripotency transcription factors located in the promoter of Ash2l-1 and Ash2l-2, respectively. Theses transcription factors may mediate the compensation effect between Ash2l-1 and Ash2l-2. Collectively, these results indicate that the compensation effects between Ash2l-1 and Ash2l-2 may be involved in the maintenance of mESCs pluripotency and the regulation of genomic H3K4me3.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Camundongos/embriologia , Camundongos/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Camundongos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
Shock ; 60(2): 255-261, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278996

RESUMO

ABSTRACT: Mitochondrial damage is an important cause of heart dysfunction after severe burn injury. However, the pathophysiological process remains unclear. This study aims to examine the mitochondrial dynamics in the heart and the role of µ-calpain, a cysteine protease, in this scenario. Rats were subjected to severe burn injury treatment, and the calpain inhibitor MDL28170 was administered intravenously 1 h before or after burn injury. Rats in the burn group displayed weakened heart performance and decreased mean arterial pressure, which was accompanied by a diminishment of mitochondrial function. The animals also exhibited higher levels of calpain in mitochondria, as reflected by immunofluorescence staining and activity tests. In contrast, treatment with MDL28170 before any severe burn diminished these responses to a severe burn. Burn injury decreased the abundance of mitochondria and resulted in a lower percentage of small mitochondria and a higher percentage of large mitochondria. Furthermore, burn injury caused an increase in the fission protein DRP1 in the mitochondria and a decrease in the inner membrane fusion protein OPA1. Similarly, these alterations were also blocked by MDL28170. Of note, inhibition of calpain yielded the emergence of more elongated mitochondria along with membrane invagination in the middle of the longitude, which is an indicator of the fission process. Finally, MDL28170, administered 1 h after burn injury, preserved mitochondrial function and heart performance, and increased the survival rate. Overall, these results provided the first evidence that mitochondrial recruitment of calpain confers heart dysfunction after severe burn injury, which involves aberrant mitochondrial dynamics.


Assuntos
Queimaduras , Calpaína , Ratos , Animais , Dinâmica Mitocondrial , Mitocôndrias/metabolismo , Queimaduras/complicações , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo
4.
Rheumatol Int ; 32(3): 759-66, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21188382

RESUMO

The purpose of this study was to observe the effect of 810-nm low-level laser to apoptosis of chondrocyte and related proteins, including caspase-3 and caspase-8, in rabbit surgery-induced model of knee osteoarthritis. A total of 24 New Zealand White rabbits were randomly assigned into 3 groups: test group, model group, and normal group. The rabbits in test group and model group received anterior cruciate ligament transection in the right knee. Six weeks after transection, the rabbits in test group were given 10-session 810-nm laser illumination. Eight weeks after transection, all animal were killed. Modified Mankin Score was made for histological assessment. The caspases expressions and chondrocytes apoptosis were tested using the immunohistochemistry and TUNEL assessment, respectively. The modified Mankin Score of test group was significantly lower than model group (P < 0.01) and higher than normal group (P < 0.01). The caspase-8 expression of test group was lower than model group and higher than normal group, but no significant difference was found (P > 0.05). This study revealed that the 810-nm low-level laser can improve cartilage structure, prevent articular cartilage degradation and significantly decrease the expression of caspase-3 in this surgery-induced OA model. Further studies are needed.


Assuntos
Apoptose/efeitos da radiação , Caspase 3/metabolismo , Caspase 8/metabolismo , Condrócitos/efeitos da radiação , Lasers , Osteoartrite do Joelho/radioterapia , Animais , Ligamento Cruzado Anterior/patologia , Ligamento Cruzado Anterior/efeitos da radiação , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior , Condrócitos/enzimologia , Condrócitos/patologia , Modelos Animais de Doenças , Osteoartrite do Joelho/enzimologia , Osteoartrite do Joelho/patologia , Coelhos , Joelho de Quadrúpedes/efeitos da radiação , Joelho de Quadrúpedes/cirurgia , Resultado do Tratamento
5.
Theranostics ; 10(5): 2422-2435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104514

RESUMO

Macrophages are essential for wound repair after myocardial infarction (MI). CD226, a member of immunoglobulin superfamily, is expressed on inflammatory monocytes, however, the role of CD226 in infarct healing and the effect of CD226 on macrophage remain unknown. Methods: Wild type and CD226 knockout (CD226 KO) mice were subjected to permanent coronary ligation. CD226 expression, cardiac function and ventricular remodeling were evaluated. Profile of macrophages, myofibroblasts, angiogenesis and monocytes mobilization were determined. Results: CD226 expression increased in the infarcted heart, with a peak on day 7 after MI. CD226 KO attenuated infarct expansion and improved infarct healing after MI. CD226 deletion resulted in increased F4/80+ CD206+ M2 macrophages and diminished Mac-3+ iNOS+ M1 macrophages accumulation in the infarcted heart, as well as enrichment of α-smooth muscle actin positive myofibroblasts and Ki67+ CD31+ endothelial cells, leading to increased reparative collagen deposition and angiogenesis. Furthermore, CD226 deletion restrained inflammatory monocytes mobilization, as revealed by enhanced retention of Ly6Chi monocytes in the spleen associated with a decrease of Ly6Chi monocytes in the peripheral blood, whereas local proliferation of macrophage in the ischemic heart was not affected by CD226 deficiency. In vitro studies using bone marrow-derived macrophages showed that CD226 deletion potentiated M2 polarization and suppressed M1 polarization. Conclusion: CD226 expression is dramatically increased in the infarcted heart, and CD226 deletion improves post-infarction healing and cardiac function by favoring macrophage polarization towards reparative phenotype. Thus, inhibition of CD226 may represent a novel therapeutic approach to improve wound healing and cardiac function after MI.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Remodelação Ventricular , Animais , Antígenos de Diferenciação de Linfócitos T/genética , Células Endoteliais/metabolismo , Ativação de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Fenótipo , Cicatrização
6.
Shanghai Kou Qiang Yi Xue ; 28(6): 662-665, 2019 Dec.
Artigo em Zh | MEDLINE | ID: mdl-32346716

RESUMO

PURPOSE: To investigate the effect of early treatment of Class II division 1 malocclusion with T4K appliance on soft and hard tissue changes and prognosis of patients with mixed teeth. METHODS: Twenty patients with Class II malocclusion, 11 males and 9 females, aged from 9 to 14 years, with an average age of 11.05 years, were selected. All patients were treated with T4K appliance for 12 months. The changes of soft and hard tissues before, 12 months after and 36 months after orthodontic treatment were measured and compared, to explore the stability of T4K appliance in the treatment of Class Ⅱ division 1 malocclusion. The data were analyzed with SPSS 25.0 software package. RESULTS: The hard tissue indexes U1-NA, U1-NA, L1-NB, L1-NB were significantly decreased (P<0.05) and U1-L1 was significantly increased (P<0.05). Soft tissue index UL-U1, LL-L1 increased significantly (P<0.05);overjet, overbite, E-upper-lip, E-lower-lip decreased significantly (P<0.05); nasolabial angle, sulcus dip, soft tissue thickness significantly increased (P<0.05). There was no significant difference between 12 months and 36 months after treatment (P>0.0.5). CONCLUSIONS: T4K appliance used for early treatment of Class Ⅱ malocclusion can correct patients' poor oral habits, improve the relationship between oral and maxillofacial soft and hard tissues, with good long-term efficacy and stable curative effect.


Assuntos
Má Oclusão Classe II de Angle , Sobremordida , Adolescente , Cefalometria , Criança , Feminino , Dureza , Humanos , Lábio , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA